論文の概要: Scale Contrastive Learning with Selective Attentions for Blind Image Quality Assessment
- arxiv url: http://arxiv.org/abs/2411.09007v1
- Date: Wed, 13 Nov 2024 20:17:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:42.776269
- Title: Scale Contrastive Learning with Selective Attentions for Blind Image Quality Assessment
- Title(参考訳): ブラインド画像品質評価のための選択的注意によるスケールコントラスト学習
- Authors: Zihao Huang, Xudong Li, Bohan Fu, Xiaohui Chu, Ke Li, Yunhang Shen, Yan Zhang,
- Abstract要約: ブラインド画像品質評価(BIQA)はコンピュータビジョンの基本課題であるが、人間の主観的知覚と一貫して一致しないことが多い。
近年の進歩は、人間の視覚の階層構造を再現できるため、マルチスケール評価戦略が有望であることを示している。
本稿では,異なるスケールにわたる情報の顕著な冗長性と,これらのスケールの特徴を組み合わせることで生じる混乱という,2つの主要な課題に対処する。
- 参考スコア(独自算出の注目度): 15.235786583920062
- License:
- Abstract: Blind image quality assessment (BIQA) serves as a fundamental task in computer vision, yet it often fails to consistently align with human subjective perception. Recent advances show that multi-scale evaluation strategies are promising due to their ability to replicate the hierarchical structure of human vision. However, the effectiveness of these strategies is limited by a lack of understanding of how different image scales influence perceived quality. This paper addresses two primary challenges: the significant redundancy of information across different scales, and the confusion caused by combining features from these scales, which may vary widely in quality. To this end, a new multi-scale BIQA framework is proposed, namely Contrast-Constrained Scale-Focused IQA Framework (CSFIQA). CSFIQA features a selective focus attention mechanism to minimize information redundancy and highlight critical quality-related information. Additionally, CSFIQA includes a scale-level contrastive learning module equipped with a noise sample matching mechanism to identify quality discrepancies across the same image content at different scales. By exploring the intrinsic relationship between image scales and the perceived quality, the proposed CSFIQA achieves leading performance on eight benchmark datasets, e.g., achieving SRCC values of 0.967 (versus 0.947 in CSIQ) and 0.905 (versus 0.876 in LIVEC).
- Abstract(参考訳): ブラインド画像品質評価(BIQA)はコンピュータビジョンの基本課題であるが、人間の主観的知覚と一貫して一致しないことが多い。
近年の進歩は、人間の視覚の階層構造を再現できるため、マルチスケール評価戦略が有望であることを示している。
しかし、これらの戦略の有効性は、異なる画像スケールが知覚された品質にどのように影響するかの理解の欠如によって制限される。
本稿では,異なるスケールにわたる情報の顕著な冗長性と,これらのスケールの特徴を組み合わせることで生じる混乱の2つの主要な課題について論じる。
この目的のために、マルチスケールのBIQAフレームワーク、すなわちContrast-Constrained Scale-Focused IQA Framework (CSFIQA)を提案する。
CSFIQAは、情報の冗長性を最小化し、重要な品質関連情報を強調するために、選択的な焦点注意機構を備えている。
さらに、CSFIQAにはノイズサンプルマッチング機構を備えたスケールレベルのコントラスト学習モジュールが含まれており、同じ画像コンテンツ間で異なるスケールで品質の相違を識別する。
画像スケールと知覚品質の本質的な関係を探索することにより、提案したCSFIQAは8つのベンチマークデータセット(例: 0.967(CSIQでは 0.947)と0.905(LIVECでは 0.876)のSRCC値を達成する。
関連論文リスト
- Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
Q-Groundは、大規模な視覚的品質グラウンドに取り組むための最初のフレームワークである。
Q-Groundは、大規模なマルチモダリティモデルと詳細な視覚的品質分析を組み合わせる。
コントリビューションの中心は、QGround-100Kデータセットの導入です。
論文 参考訳(メタデータ) (2024-07-24T06:42:46Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Pairwise Comparisons Are All You Need [22.798716660911833]
ブラインド画像品質評価(BIQA)アプローチは、様々な画像に一様に適用される一般的な品質基準に依存しているため、現実のシナリオでは不足することが多い。
本稿では、従来のBIQAの制限を回避すべく設計されたペアワイズ比較フレームワークであるPICNIQを紹介する。
PICNIQは、サイコメトリックスケーリングアルゴリズムを用いることで、対比較をジャストオブジェクタブルディファレンス(JOD)の品質スコアに変換し、画像品質の粒度と解釈可能な指標を提供する。
論文 参考訳(メタデータ) (2024-03-13T23:43:36Z) - Feature Denoising Diffusion Model for Blind Image Quality Assessment [58.5808754919597]
Blind Image Quality Assessment (BIQA) は、基準ベンチマークを使わずに、人間の知覚に合わせて画質を評価することを目的としている。
ディープラーニング BIQA の手法は、一般的に、伝達学習のための高レベルのタスクの特徴の使用に依存する。
本稿では,BIQAにおける特徴認知のための拡散モデルについて検討する。
論文 参考訳(メタデータ) (2024-01-22T13:38:24Z) - Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity [55.399230250413986]
上流タスクから有害なセマンティックノイズを除去するためのQFM-IQM(Quality-Aware Feature Matching IQA Metric)を提案する。
提案手法は,8つの標準IQAデータセット上での最先端NR-IQA法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2023-12-11T06:50:27Z) - Data-Efficient Image Quality Assessment with Attention-Panel Decoder [19.987556370430806]
ブラインド画像品質評価(BIQA)はコンピュータビジョンの基本課題であり、複雑な歪み条件と多様な画像内容のために未解決のままである。
本稿では,トランスフォーマーアーキテクチャに基づく新しいBIQAパイプラインを提案する。
論文 参考訳(メタデータ) (2023-04-11T03:52:17Z) - Blind Image Quality Assessment via Vision-Language Correspondence: A
Multitask Learning Perspective [93.56647950778357]
ブラインド画像品質評価(BIQA)は、参照情報なしで画像品質の人間の知覚を予測する。
我々は,他のタスクからの補助的知識を活用するために,BIQAのための汎用的かつ自動化されたマルチタスク学習手法を開発した。
論文 参考訳(メタデータ) (2023-03-27T07:58:09Z) - SPQE: Structure-and-Perception-Based Quality Evaluation for Image
Super-Resolution [24.584839578742237]
超解像技術は画像の画質を大幅に改善し、解像度を向上した。
また、これらのアルゴリズムや生成された画像を評価するための効率的なSR画像品質評価(SR-IQA)も求めている。
深層学習ベースSRでは、生成した高品質で視覚的に喜ぶ画像は、対応する低品質の画像とは異なる構造を持つ可能性がある。
論文 参考訳(メタデータ) (2022-05-07T07:52:55Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。