The Systems Engineering Approach in Times of Large Language Models
- URL: http://arxiv.org/abs/2411.09050v1
- Date: Wed, 13 Nov 2024 22:10:07 GMT
- Title: The Systems Engineering Approach in Times of Large Language Models
- Authors: Christian Cabrera, Viviana Bastidas, Jennifer Schooling, Neil D. Lawrence,
- Abstract summary: Large Language Models (LLMs) to address critical societal problems requires adopting this technology into socio-technical systems.
This paper introduces the challenges LLMs generate and surveys systems research efforts for engineering AI-based systems.
- Score: 6.333694023236363
- License:
- Abstract: Using Large Language Models (LLMs) to address critical societal problems requires adopting this novel technology into socio-technical systems. However, the complexity of such systems and the nature of LLMs challenge such a vision. It is unlikely that the solution to such challenges will come from the Artificial Intelligence (AI) community itself. Instead, the Systems Engineering approach is better equipped to facilitate the adoption of LLMs by prioritising the problems and their context before any other aspects. This paper introduces the challenges LLMs generate and surveys systems research efforts for engineering AI-based systems. We reveal how the systems engineering principles have supported addressing similar issues to the ones LLMs pose and discuss our findings to provide future directions for adopting LLMs.
Related papers
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
This paper presents the findings of a literature review on the integration of edge intelligence (EI) and socialized learning (SL)
SL is a learning paradigm predicated on social principles and behaviors, aimed at amplifying the collaborative capacity and collective intelligence of agents.
We elaborate on three integrated components: socialized architecture, socialized training, and socialized inference, analyzing their strengths and weaknesses.
arXiv Detail & Related papers (2024-04-20T11:07:29Z) - LLM-Based Multi-Agent Systems for Software Engineering: Vision and the Road Ahead [14.834072370183106]
This paper envisions the evolution of Multi-Agent (LMA) systems in addressing complex and multi-faceted software engineering challenges.
By examining the role of LMA systems in future software engineering practices, this vision paper highlights the potential applications and emerging challenges.
arXiv Detail & Related papers (2024-04-07T07:05:40Z) - Building Guardrails for Large Language Models [19.96292920696796]
Guardrails, which filter the inputs or outputs of LLMs, have emerged as a core safeguarding technology.
This position paper takes a deep look at current open-source solutions (Llama Guard, Nvidia NeMo, Guardrails AI) and discusses the challenges and the road towards building more complete solutions.
arXiv Detail & Related papers (2024-02-02T16:35:00Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data.
However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency.
This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective.
arXiv Detail & Related papers (2023-12-23T11:57:53Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks.
We define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules.
We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL) system.
arXiv Detail & Related papers (2022-05-01T11:01:28Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z) - Engineering AI Systems: A Research Agenda [9.84673609667263]
We provide a conceptualization of the typical evolution patterns that companies experience when employing machine learning.
The main contribution of the paper is a research agenda for AI engineering that provides an overview of the key engineering challenges surrounding ML solutions.
arXiv Detail & Related papers (2020-01-16T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.