論文の概要: Heuristical Comparison of Vision Transformers Against Convolutional Neural Networks for Semantic Segmentation on Remote Sensing Imagery
- arxiv url: http://arxiv.org/abs/2411.09101v2
- Date: Thu, 13 Feb 2025 18:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:46:16.971009
- Title: Heuristical Comparison of Vision Transformers Against Convolutional Neural Networks for Semantic Segmentation on Remote Sensing Imagery
- Title(参考訳): リモートセンシング画像のセマンティックセグメンテーションのための畳み込みニューラルネットワークに対する視覚変換器のヒューリスティック比較
- Authors: Ashim Dahal, Saydul Akbar Murad, Nick Rahimi,
- Abstract要約: Vision Transformers (ViT) はコンピュータビジョンの分野で新たな研究の波をもたらした。
本稿では,航空画像のセマンティックセグメンテーションにViTを使用する(あるいは使用しない)3つの重要な要素の比較に焦点をあてる。
本稿では,新たな重み付き損失関数がCNNモデルの性能をViTを用いたトランスファー学習と比較して著しく向上させることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Vision Transformers (ViT) have recently brought a new wave of research in the field of computer vision. These models have performed particularly well in image classification and segmentation. Research on semantic and instance segmentation has accelerated with the introduction of the new architecture, with over 80% of the top 20 benchmarks for the iSAID dataset based on either the ViT architecture or the attention mechanism behind its success. This paper focuses on the heuristic comparison of three key factors of using (or not using) ViT for semantic segmentation of remote sensing aerial images on the iSAID dataset. The experimental results observed during this research were analyzed based on three objectives. First, we studied the use of a weighted fused loss function to maximize the mean Intersection over Union (mIoU) score and Dice score while minimizing entropy or class representation loss. Second, we compared transfer learning on Meta's MaskFormer, a ViT-based semantic segmentation model, against a generic UNet Convolutional Neural Network (CNN) based on mIoU, Dice scores, training efficiency, and inference time. Third, we examined the trade-offs between the two models in comparison to current state-of-the-art segmentation models. We show that the novel combined weighted loss function significantly boosts the CNN model's performance compared to transfer learning with ViT. The code for this implementation can be found at: https://github.com/ashimdahal/ViT-vs-CNN-Image-Segmentation.
- Abstract(参考訳): ビジョントランスフォーマー(ViT)は最近、コンピュータビジョンの分野で新しい研究の波をもたらした。
これらのモデルは特に画像分類やセグメンテーションにおいてよく機能している。
セマンティックとインスタンスセグメンテーションの研究は、新しいアーキテクチャの導入によって加速し、iSAIDデータセットのトップ20ベンチマークの80%以上が、その成功の背後にあるViTアーキテクチャまたはアテンションメカニズムに基づいている。
本稿では、iSAIDデータセット上のリモートセンシング空中画像のセマンティックセグメンテーションにViTを使用する(あるいは使用しない)3つの重要な要素のヒューリスティックな比較に焦点を当てた。
本研究で得られた実験結果は3つの目的に基づいて分析した。
まず,重み付き融合損失関数を用いて,エントロピーやクラス表現損失を最小限に抑えつつ,平均mIoUスコアとDiceスコアを最大化することを検討した。
第2に、VTに基づくセマンティックセグメンテーションモデルであるMetaのMaskFormerにおける転送学習を、mIoU、Diceスコア、トレーニング効率、推論時間に基づく一般的なUNet畳み込みニューラルネットワーク(CNN)と比較した。
第3に,2つのモデル間のトレードオフを,現在の最先端セグメンテーションモデルと比較した。
本稿では,新たな重み付き損失関数がCNNモデルの性能をViTを用いたトランスファー学習と比較して著しく向上させることを示す。
この実装のコードは、https://github.com/ashimdahal/ViT-vs-CNN-Image-Segmentationで見ることができる。
関連論文リスト
- SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
SIGMA (Sinkhorn-guided Masked Video Modelling) は、新しいビデオ事前学習法である。
時空管の特徴を,限られた数の学習可能なクラスタに均等に分散する。
10個のデータセットによる実験結果から,より高性能で時間的,堅牢な映像表現を学習する上で,SIGMAの有効性が検証された。
論文 参考訳(メタデータ) (2024-07-22T08:04:09Z) - Semantic Segmentation using Vision Transformers: A survey [0.0]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)はセマンティックセグメンテーションのためのアーキテクチャモデルを提供する。
ViTは画像分類に成功しており、画像のセグメンテーションや物体検出といった密集した予測タスクに直接適用することはできない。
この調査は、ベンチマークデータセットを使用してセマンティックセグメンテーション用に設計されたViTアーキテクチャのパフォーマンスをレビューし、比較することを目的としている。
論文 参考訳(メタデータ) (2023-05-05T04:11:00Z) - RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in
Autonomous Driving [80.14669385741202]
視覚変換器(ViT)は多くの画像ベースのベンチマークで最先端の結果を得た。
ViTはトレーニングが難しいことで知られており、強力な表現を学ぶために大量のトレーニングデータを必要とする。
提案手法はRangeViTと呼ばれ,nuScenes や Semantic KITTI において既存のプロジェクションベースの手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-01-24T18:50:48Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
本稿では,テクスチャ分類のための小さなデータセット上で教師付きモデルをトレーニングするために,畳み込み層(CL)と大規模計量学習を組み合わせた新しいアプローチを提案する。
テクスチャと病理画像データセットの実験結果から,提案手法は同等のCNNと比較して計算コストが低く,収束が早く,競争精度が向上することが示された。
論文 参考訳(メタデータ) (2022-06-17T04:07:45Z) - Do Vision Transformers See Like Convolutional Neural Networks? [45.69780772718875]
近年の研究では、画像分類タスクにおいて、(Vision) Transformer Model (ViT) が同等またはそれ以上の性能を達成できることが示されている。
畳み込みネットワークのように振る舞うのか、それとも全く異なる視覚表現を学ぶのか?
例えば、ViTはすべての層にわたってより均一な表現を持つ。
論文 参考訳(メタデータ) (2021-08-19T17:27:03Z) - Vision Transformers are Robust Learners [65.91359312429147]
ビジョントランスフォーマー(ViT)の一般的な腐敗や摂動、分布シフト、自然逆転例に対する堅牢性について検討します。
ViTsが実際により堅牢な学習者である理由を説明するために、定量的および定性的な指標を提供する分析を提示します。
論文 参考訳(メタデータ) (2021-05-17T02:39:22Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - On the Texture Bias for Few-Shot CNN Segmentation [21.349705243254423]
畳み込みニューラルネットワーク(CNN)は、視覚認識タスクを実行するために形状によって駆動される。
最近の証拠は、CNNのテクスチャバイアスが、大きなラベル付きトレーニングデータセットで学習するときに、より高いパフォーマンスのモデルを提供することを示している。
本稿では,特徴空間内の高周波局所成分を減衰させるために,ガウス差分(DoG)の集合を統合する新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-09T11:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。