論文の概要: Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery
- arxiv url: http://arxiv.org/abs/2411.09127v2
- Date: Wed, 16 Jul 2025 11:39:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 14:40:09.170103
- Title: Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery
- Title(参考訳): 構造探索のための深部ニューラルネットワークの複雑度を考慮した学習
- Authors: Valentin Frank Ingmar Guenter, Athanasios Sideris,
- Abstract要約: 本稿では、トレーニング中に、トレーニング済みのネットワークを適用せずに機能するディープニューラルネットワークのユニット・レイヤ・プルーニングとレイヤ・プルーニングを組み合わせた新しいアルゴリズムを提案する。
本アルゴリズムは, 学習精度とプルーニングレベルを最適に交換し, ユニットプルーニングと計算量とパラメータ複雑性のバランスをとる。
提案アルゴリズムは,ネットワークに対応する最適化問題の解に収束することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel algorithm for combined unit and layer pruning of deep neural networks that functions during training and without requiring a pre-trained network to apply. Our algorithm optimally trades-off learning accuracy and pruning levels while balancing layer vs. unit pruning and computational vs. parameter complexity using only three user-defined parameters, which are easy to interpret and tune. We formulate a stochastic optimization problem over the network weights and the parameters of variational Bernoulli distributions for binary Random Variables taking values either 0 or 1 and scaling the units and layers of the network. Optimal network structures are found as the solution to this optimization problem. Pruning occurs when a variational parameter converges to 0 rendering the corresponding structure permanently inactive, thus saving computations both during training and prediction. A key contribution of our approach is to define a cost function that combines the objectives of prediction accuracy and network pruning in a computational/parameter complexity-aware manner and the automatic selection of the many regularization parameters. We show that the proposed algorithm converges to solutions of the optimization problem corresponding to deterministic networks. We analyze the ODE system that underlies our stochastic optimization algorithm and establish domains of attraction for the dynamics of the network parameters. These theoretical results lead to practical pruning conditions avoiding the premature pruning of units and layers during training. We evaluate our method on the CIFAR-10/100 and ImageNet datasets using ResNet architectures and demonstrate that it gives improved results with respect to pruning ratios and test accuracy over layer-only or unit-only pruning and favorably competes with combined unit and layer pruning algorithms requiring pre-trained networks.
- Abstract(参考訳): 本稿では、トレーニング中に、トレーニング済みのネットワークを適用せずに機能するディープニューラルネットワークのユニット・レイヤ・プルーニングとレイヤ・プルーニングを組み合わせた新しいアルゴリズムを提案する。
提案アルゴリズムは,3つのパラメータのみを用いて,レイヤ対ユニットプルーニングと計算量対パラメータ複雑性のバランスを保ちながら,学習精度とプルーニングレベルを最適に交換する。
ネットワーク重みに対する確率的最適化問題を定式化し、二元ランダム変数に対する変分ベルヌーイ分布のパラメータを 0 または 1 の値で表し、ネットワークの単位と層をスケールする。
この最適化問題の解法として最適ネットワーク構造が考えられる。
プルーニングは、変動パラメータが0に収束して対応する構造が永久に不活性になるときに発生し、トレーニングと予測の両方で計算を節約する。
提案手法の主な貢献は,予測精度とネットワークプルーニングの目的を計算・パラメータの複雑性に配慮した方法で組み合わせたコスト関数と,多数の正規化パラメータの自動選択を定義することである。
提案アルゴリズムは決定論的ネットワークに対応する最適化問題の解に収束することを示す。
我々は,我々の確率最適化アルゴリズムの基盤となるODEシステムを分析し,ネットワークパラメータのダイナミックスに対するアトラクションの領域を確立する。
これらの理論的結果は、訓練中にユニットとレイヤが早期に切断されるのを避ける実用的な刈り込み条件をもたらす。
本稿では,ResNetアーキテクチャを用いてCIFAR-10/100およびImageNetデータセット上で評価を行い,プレトレーニング済みネットワークを必要とするユニット・レイヤ・プルーニング・アルゴリズムに比較して,レイヤ・オンリー・プルーニングやユニット・オンリー・プルーニングに対するプルーニング比とテスト精度の向上を実証した。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - Learning a Consensus Sub-Network with Polarization Regularization and
One Pass Training [3.2214522506924093]
プルーニングスキームは、静的プルーニングのための反復的なトレーニングと微調整、動的プルーニンググラフの繰り返し計算によって、余分なオーバーヘッドを生み出す。
本稿では,より軽量なサブネットワークを学習するためのパラメータ解析手法を提案する。
CIFAR-10 と CIFAR-100 を用いた結果,分類精度が1% 未満の深層ネットワークにおける接続の50%を除去できることが示唆された。
論文 参考訳(メタデータ) (2023-02-17T09:37:17Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Robust Learning of Parsimonious Deep Neural Networks [0.0]
本稿では,ニューラルネットワークにおける無関係構造を識別・排除できる同時学習および刈り取りアルゴリズムを提案する。
最適選択に欠かせないパラメータに対して,新しい超優先度分布を導出する。
我々は,提案アルゴリズムをMNISTデータセット上で評価し,完全連結型および畳み込み型LeNetアーキテクチャを用いた。
論文 参考訳(メタデータ) (2022-05-10T03:38:55Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - CONetV2: Efficient Auto-Channel Size Optimization for CNNs [35.951376988552695]
本研究は,チャネルサイズのマイクロサーチ空間を調べることにより,計算制約のある環境において効率的な手法を提案する。
チャネルサイズ最適化に際し、ネットワークの異なる接続層内の依存関係を抽出する自動アルゴリズムを設計する。
また、テスト精度と高い相関性を持ち、個々のネットワーク層を解析できる新しいメトリクスも導入する。
論文 参考訳(メタデータ) (2021-10-13T16:17:19Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
本稿では、予測精度とネットワーク複雑性を2つの個別目的関数として扱うことにより、ニューラルネットワークのトレーニングに関する多目的視点を提案する。
模範的畳み込みニューラルネットワークの予備的な数値結果から、ニューラルネットワークの複雑性の大幅な低減と精度の低下が可能であることが確認された。
論文 参考訳(メタデータ) (2020-08-31T13:28:03Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
サンプル選択とランキングの両方を導くことで、アーキテクチャとトレーニングのレシピを共同でスコアする精度予測器を提案する。
高速な進化的検索をCPU分で実行し、さまざまなリソース制約に対するアーキテクチャと準備のペアを生成します。
FBNetV3は最先端のコンパクトニューラルネットワークのファミリーを構成しており、自動と手動で設計された競合より優れている。
論文 参考訳(メタデータ) (2020-06-03T05:20:21Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。