Correction of circuit faults in a stacked quantum memory using rank-metric codes
- URL: http://arxiv.org/abs/2411.09173v1
- Date: Thu, 14 Nov 2024 04:19:40 GMT
- Title: Correction of circuit faults in a stacked quantum memory using rank-metric codes
- Authors: Nicolas Delfosse, Gilles ZĂ©mor,
- Abstract summary: We introduce a model for a stacked quantum memory made with multi-qubit cells.
We design quantum error correction codes for this model by generalizing rank-metric codes to the quantum setting.
- Score: 13.996171129586733
- License:
- Abstract: We introduce a model for a stacked quantum memory made with multi-qubit cells, inspired by multi-level flash cells in classical solid-state drive, and we design quantum error correction codes for this model by generalizing rank-metric codes to the quantum setting. Rank-metric codes are used to correct faulty links in classical communication networks. We propose a quantum generalization of Gabidulin codes, which is one of the most popular family of rank-metric codes, and we design a protocol to correct faults in Clifford circuits applied to a stacked quantum memory based on these codes. We envision potential applications to the optimization of stabilizer states and magic states factories, and to variational quantum algorithms. Further work is needed to make this protocol practical. It requires a hardware platform capable of hosting multi-qubit cells with low crosstalk between cells, a fault-tolerant syndrome extraction circuit for rank-metric codes and an associated efficient decoder.
Related papers
- Engineering Fault-tolerant Bosonic Codes with Quantum Lattice Gates [1.1982127665424678]
Bosonic codes offer a hardware-efficient approach to encoding and protecting quantum information with a single continuous-variable bosonic system.
We introduce a new universal quantum gate set composed of only one type of gate element, which we call the quantum lattice gate, to engineer bosonic code states for fault-tolerant quantum computing.
arXiv Detail & Related papers (2024-10-22T14:47:44Z) - Low-density parity-check representation of fault-tolerant quantum circuits [5.064729356056529]
In fault-tolerant quantum computing, quantum algorithms are implemented through quantum circuits capable of error correction.
This paper presents a toolkit for designing and analysing fault-tolerant quantum circuits.
arXiv Detail & Related papers (2024-03-15T12:56:38Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - All-photonic one-way quantum repeaters [15.3862808585761]
We propose a general framework for all-photonic one-way quantum repeaters based on the measurement-based error correction.
We present a novel decoding scheme, where the error correction process is carried out at the destination based on the accumulated data from the measurements made across the network.
arXiv Detail & Related papers (2022-10-18T18:07:19Z) - Quantum Error Correction via Noise Guessing Decoding [0.0]
Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation.
This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime.
arXiv Detail & Related papers (2022-08-04T16:18:20Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.