論文の概要: SAFES: Sequential Privacy and Fairness Enhancing Data Synthesis for Responsible AI
- arxiv url: http://arxiv.org/abs/2411.09178v2
- Date: Sat, 16 Nov 2024 03:13:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 10:50:30.386482
- Title: SAFES: Sequential Privacy and Fairness Enhancing Data Synthesis for Responsible AI
- Title(参考訳): SAFES: 責任あるAIのためのデータ合成を促進するシークエンシャルプライバシとフェアネス
- Authors: Spencer Giddens, Fang Liu,
- Abstract要約: SAFES(Sequential PrivAcy and Fairness Enhancing data synthesis procedure)を紹介する。
適切なプライバシ損失を得るために、SAFESの生成した合成データは、比較的実用性損失の少ないフェアネス指標を著しく改善した。
- 参考スコア(独自算出の注目度): 3.0445044300235535
- License:
- Abstract: As data-driven and AI-based decision making gains widespread adoption in most disciplines, it is crucial that both data privacy and decision fairness are appropriately addressed. While differential privacy (DP) provides a robust framework for guaranteeing privacy and several widely accepted methods have been proposed for improving fairness, the vast majority of existing literature treats the two concerns independently. For methods that do consider privacy and fairness simultaneously, they often only apply to a specific machine learning task, limiting their generalizability. In response, we introduce SAFES, a Sequential PrivAcy and Fairness Enhancing data Synthesis procedure that sequentially combines DP data synthesis with a fairness-aware data transformation. SAFES allows full control over the privacy-fairness-utility trade-off via tunable privacy and fairness parameters. We illustrate SAFES by combining AIM, a graphical model-based DP data synthesizer, with a popular fairness-aware data pre-processing transformation. Empirical evaluations on the Adult and COMPAS datasets demonstrate that for reasonable privacy loss, SAFES-generated synthetic data achieve significantly improved fairness metrics with relatively low utility loss.
- Abstract(参考訳): データ駆動型とAIベースの意思決定は、ほとんどの分野において広く採用されているため、データのプライバシと意思決定公正性の両方に適切に対処することが不可欠である。
差分プライバシー(DP)は、プライバシーを保証するための堅牢なフレームワークを提供し、公正性を改善するために広く受け入れられている方法がいくつか提案されているが、既存の文献の大部分は、この2つの懸念を独立して扱う。
プライバシと公平性を同時に考慮するメソッドの場合、それらは特定の機械学習タスクにのみ適用され、一般化性を制限する。
そこで本研究では,DPデータ合成とフェアネス対応データ変換を逐次組み合わせた逐次PrivAcy and Fairness Enhancingデータ合成手法であるSAFESを紹介する。
SAFESは、調整可能なプライバシとフェアネスパラメータを通じて、プライバシとフェアネスのトレードオフを完全にコントロールできる。
グラフィカルモデルに基づくDPデータシンセサイザーであるAIMと、一般的なフェアネス対応データ前処理変換を組み合わせたSAFESについて説明する。
アダルトデータセットとCompASデータセットの実証的な評価は、適切なプライバシ損失に対して、SAFESの生成した合成データは、比較的低いユーティリティ損失を伴うフェアネス指標を著しく改善することを示した。
関連論文リスト
- Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
微分プライバシーと拡散モデル(DM)の統合は、有望だが挑戦的なフロンティアを示している。
この分野での最近の進歩は、公開データによる事前学習によって高品質な合成データを生成する可能性を強調している。
本稿では,プライバシとユーティリティのトレードオフを高めるために,トレーニング可能なパラメータの数を最小限に抑える,プライベート拡散モデルに最適化された戦略を提案する。
論文 参考訳(メタデータ) (2024-06-03T14:18:04Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - FedFDP: Fairness-Aware Federated Learning with Differential Privacy [21.55903748640851]
Federated Learning(FL)は、データサイロの課題を克服するための、新しい機械学習パラダイムである。
我々はまず,FedFairと呼ばれるフェアネス対応のフェデレーション学習アルゴリズムを提案する。
次に、公正性、プライバシ保護、モデルパフォーマンスのトレードオフに対処するため、差分プライバシー保護を導入し、FedFDPアルゴリズムを形成する。
論文 参考訳(メタデータ) (2024-02-25T08:35:21Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Bias Mitigated Learning from Differentially Private Synthetic Data: A
Cautionary Tale [13.881022208028751]
バイアスは、合成データ分布が実データ分布の不整合推定であるため、すべての解析に影響を与える可能性がある。
民営化確率比を用いた複数のバイアス緩和戦略を提案する。
バイアス緩和は、合成データの一般的な応用に、シンプルで効果的なプライバシー準拠の強化をもたらすことを示す。
論文 参考訳(メタデータ) (2021-08-24T19:56:44Z) - Causally Constrained Data Synthesis for Private Data Release [36.80484740314504]
原データの特定の統計特性を反映した合成データを使用することで、原データのプライバシーが保護される。
以前の作業では、正式なプライバシ保証を提供するために、差分プライベートなデータリリースメカニズムを使用していました。
トレーニングプロセスに因果情報を導入し、上記のトレードオフを好意的に修正することを提案する。
論文 参考訳(メタデータ) (2021-05-27T13:46:57Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z) - Really Useful Synthetic Data -- A Framework to Evaluate the Quality of
Differentially Private Synthetic Data [2.538209532048867]
プライバシ保護の原則を付加する合成データ生成の最近の進歩は、プライバシ保護の方法で統計情報を共有するための重要なステップである。
データプライバシとデータ品質のトレードオフを最適化するためには、後者について詳しく考える必要があります。
本研究では,応用研究者の視点から,差分的にプライベートな合成データの質を評価する枠組みを開発する。
論文 参考訳(メタデータ) (2020-04-16T16:24:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。