Classical Verification of Quantum Learning Advantages with Noises
- URL: http://arxiv.org/abs/2411.09210v1
- Date: Thu, 14 Nov 2024 06:14:39 GMT
- Title: Classical Verification of Quantum Learning Advantages with Noises
- Authors: Yinghao Ma, Jiaxi Su, Dong-Ling Deng,
- Abstract summary: We propose an efficient classical error rectification algorithm to reconstruct the noise-free results given by the quantum Fourier sampling circuit.
We also prove that a classical client with access to the random example oracle can verify the agnostic parity learning results from the noisy quantum prover.
- Score: 0.27930367518472443
- License:
- Abstract: Classical verification of quantum learning allows classical clients to reliably leverage quantum computing advantages by interacting with untrusted quantum servers. Yet, current quantum devices available in practice suffers from a variety of noises and whether existed classical verification protocols carry over to noisy scenarios remains unclear. Here, we propose an efficient classical error rectification algorithm to reconstruct the noise-free results given by the quantum Fourier sampling circuit with practical constant-level noises. In particular, we prove that the error rectification algorithm can restore the heavy Fourier coefficients by using a small number of noisy samples that scales logarithmically with the problem size. We apply this algorithm to the agnostic parity learning task with uniform input marginal and prove that this task can be accomplished in an efficient way on noisy quantum devices with our algorithm. In addition, we prove that a classical client with access to the random example oracle can verify the agnostic parity learning results from the noisy quantum prover in an efficient way, under the condition that the Fourier coefficients are sparse. Our results demonstrate the feasibility of classical verification of quantum learning advantages with noises, which provide a valuable guide for both theoretical studies and practical applications with current noisy intermediate scale quantum devices.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
We show that adding quantum random rotation noise can improve robustness in quantum classifiers against adversarial attacks.
We derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples.
arXiv Detail & Related papers (2022-11-02T05:17:04Z) - Probabilistic error cancellation with sparse Pauli-Lindblad models on
noisy quantum processors [0.7299729677753102]
We present a protocol for learning and inverting a sparse noise model that is able to capture correlated noise and scales to large quantum devices.
These advances allow us to demonstrate PEC on a superconducting quantum processor with crosstalk errors.
arXiv Detail & Related papers (2022-01-24T18:40:43Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Universal Dephasing Noise Injection via Schrodinger Wave Autoregressive
Moving Average Models [0.619788266425984]
We present and validate a novel method for noise injection of arbitrary spectra in quantum circuits.
This method can be applied to any system capable of executing arbitrary single qubit rotations, including cloud-based quantum processors.
arXiv Detail & Related papers (2021-02-05T19:00:08Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Efficient classical simulation and benchmarking of quantum processes in
the Weyl basis [0.0]
We develop a randomized benchmarking algorithm which uses Weyl unitaries to efficiently identify and learn a mixture of error models.
We apply our methods to ansatz circuits that appear in the Variational Quantum Eigensolver.
arXiv Detail & Related papers (2020-08-27T16:46:12Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
We define a formal framework for the verification and analysis of quantum machine learning algorithms against noises.
A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data.
Our approach is implemented on Google's Quantum classifier and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises.
arXiv Detail & Related papers (2020-08-17T11:56:23Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.