Toward Democracy Levels for AI
- URL: http://arxiv.org/abs/2411.09222v1
- Date: Thu, 14 Nov 2024 06:37:45 GMT
- Title: Toward Democracy Levels for AI
- Authors: Aviv Ovadya, Luke Thorburn, Kyle Redman, Flynn Devine, Smitha Milli, Manon Revel, Andrew Konya, Atoosa Kasirzadeh,
- Abstract summary: We provide a "Democracy Levels" framework for evaluating the degree to which decisions in a given domain are made democratically.
The framework can be used (i) to define in a roadmap for the democratic AI, pluralistic AI, and public AI ecosystems, (ii) to guide organizations that need to increase the legitimacy of their decisions on difficult AI governance questions, and (iii) as a rubric by those aiming to evaluate AI organizations and keep them accountable.
- Score: 4.048639768405042
- License:
- Abstract: There is increasing concern about the unilateral power of the organizations involved in the development, alignment, and governance of AI. Recent pilots - such as Meta's Community Forums and Anthropic's Collective Constitutional AI - have illustrated a promising direction, where democratic processes might be used to meaningfully improve public involvement and trust in critical decisions. However, there is no standard framework for evaluating such processes. In this paper, building on insights from the theory and practice of deliberative democracy, we provide a "Democracy Levels" framework for evaluating the degree to which decisions in a given domain are made democratically. The framework can be used (i) to define milestones in a roadmap for the democratic AI, pluralistic AI, and public AI ecosystems, (ii) to guide organizations that need to increase the legitimacy of their decisions on difficult AI governance questions, and (iii) as a rubric by those aiming to evaluate AI organizations and keep them accountable.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - From Experts to the Public: Governing Multimodal Language Models in Politically Sensitive Video Analysis [48.14390493099495]
This paper examines the governance of large language models (MM-LLMs) through individual and collective deliberation.
We conducted a two-step study: first, interviews with 10 journalists established a baseline understanding of expert video interpretation; second, 114 individuals from the general public engaged in deliberation using Inclusive.AI.
arXiv Detail & Related papers (2024-09-15T03:17:38Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Public Constitutional AI [0.0]
We are increasingly subjected to the power of AI authorities.
How can we ensure AI systems have the legitimacy necessary for effective governance?
This essay argues that to secure AI legitimacy, we need methods that engage the public in designing and constraining AI systems.
arXiv Detail & Related papers (2024-06-24T15:00:01Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - A multilevel framework for AI governance [6.230751621285321]
We propose a multilevel governance approach that involves governments, corporations, and citizens.
The levels of governance combined with the dimensions of trust in AI provide practical insights that can be used to further enhance user experiences and inform public policy related to AI.
arXiv Detail & Related papers (2023-07-04T03:59:16Z) - Democratising AI: Multiple Meanings, Goals, and Methods [0.0]
Numerous parties are calling for the democratisation of AI, but the phrase is used to refer to a variety of goals, the pursuit of which sometimes conflict.
This paper identifies four kinds of AI democratisation that are commonly discussed.
Main takeaway is that AI democratisation is a multifarious and sometimes conflicting concept.
arXiv Detail & Related papers (2023-03-22T15:23:22Z) - Putting AI Ethics into Practice: The Hourglass Model of Organizational
AI Governance [0.0]
We present an AI governance framework, which targets organizations that develop and use AI systems.
The framework is designed to help organizations deploying AI systems translate ethical AI principles into practice.
arXiv Detail & Related papers (2022-06-01T08:55:27Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.