Programming with AI: Evaluating ChatGPT, Gemini, AlphaCode, and GitHub Copilot for Programmers
- URL: http://arxiv.org/abs/2411.09224v1
- Date: Thu, 14 Nov 2024 06:40:55 GMT
- Title: Programming with AI: Evaluating ChatGPT, Gemini, AlphaCode, and GitHub Copilot for Programmers
- Authors: Md Kamrul Siam, Huanying Gu, Jerry Q. Cheng,
- Abstract summary: This study presents a thorough evaluation of leading programming assistants, including ChatGPT, Gemini(Bard AI), AlphaCode, and GitHub Copilot.
It emphasizes the need for ethical developmental practices to actualize AI models' full potential.
- Score: 0.0
- License:
- Abstract: Our everyday lives now heavily rely on artificial intelligence (AI) powered large language models (LLMs). Like regular users, programmers are also benefiting from the newest large language models. In response to the critical role that AI models play in modern software development, this study presents a thorough evaluation of leading programming assistants, including ChatGPT, Gemini(Bard AI), AlphaCode, and GitHub Copilot. The evaluation is based on tasks like natural language processing and code generation accuracy in different programming languages like Java, Python and C++. Based on the results, it has emphasized their strengths and weaknesses and the importance of further modifications to increase the reliability and accuracy of the latest popular models. Although these AI assistants illustrate a high level of progress in language understanding and code generation, along with ethical considerations and responsible usage, they provoke a necessity for discussion. With time, developing more refined AI technology is essential for achieving advanced solutions in various fields, especially with the knowledge of the feature intricacies of these models and their implications. This study offers a comparison of different LLMs and provides essential feedback on the rapidly changing area of AI models. It also emphasizes the need for ethical developmental practices to actualize AI models' full potential.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Toward Programming Languages for Reasoning: Humans, Symbolic Systems, and AI Agents [0.0]
Integration, composition, mechanization, and AI assisted development are the driving themes in the future of software development.
This paper proposes a novel approach to this challenge -- instead of new language features or logical constructs, we propose radical simplification in the form of the Bosque platform and language.
arXiv Detail & Related papers (2024-07-08T19:50:42Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
We introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own.
Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning.
We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks.
arXiv Detail & Related papers (2024-06-26T17:59:18Z) - Rethinking Software Engineering in the Foundation Model Era: From Task-Driven AI Copilots to Goal-Driven AI Pair Programmers [30.996760992473064]
We propose a paradigm shift towards goal-driven AI-powered pair programmers that collaborate with human developers.
We envision AI pair programmers that are goal-driven, human partners, SE-aware, and self-learning.
arXiv Detail & Related papers (2024-04-16T02:10:20Z) - Distributed agency in second language learning and teaching through generative AI [0.0]
ChatGPT can provide informal second language practice through chats in written or voice forms.
Instructors can use AI to build learning and assessment materials in a variety of media.
arXiv Detail & Related papers (2024-03-29T14:55:40Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - PwR: Exploring the Role of Representations in Conversational Programming [17.838776812138626]
We introduce Programming with Representations (PwR), an approach that uses representations to convey the system's understanding back to the user in natural language.
We find that representations significantly improve understandability, and instilled a sense of agency among our participants.
arXiv Detail & Related papers (2023-09-18T05:38:23Z) - HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face [85.25054021362232]
Large language models (LLMs) have exhibited exceptional abilities in language understanding, generation, interaction, and reasoning.
LLMs could act as a controller to manage existing AI models to solve complicated AI tasks.
We present HuggingGPT, an LLM-powered agent that connects various AI models in machine learning communities.
arXiv Detail & Related papers (2023-03-30T17:48:28Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Time for AI (Ethics) Maturity Model Is Now [15.870654219935972]
This paper argues that AI software is still software and needs to be approached from the software development perspective.
We wish to discuss whether the focus should be on AI ethics or, more broadly, the quality of an AI system.
arXiv Detail & Related papers (2021-01-29T17:37:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.