論文の概要: Approximate Probabilistic Inference forTime-Series Data A Robust Latent Gaussian Model With Temporal Awareness
- arxiv url: http://arxiv.org/abs/2411.09312v1
- Date: Thu, 14 Nov 2024 09:38:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:03.606392
- Title: Approximate Probabilistic Inference forTime-Series Data A Robust Latent Gaussian Model With Temporal Awareness
- Title(参考訳): 時間系列データに対する近似確率推定 : 時間的認識を伴うロバスト潜在ガウスモデル
- Authors: Anton Johansson, Arunselvan Ramaswamy,
- Abstract要約: 本稿では,時間的情報を取得するための確率的生成モデルを提案する。
我々のモデルは、負のログ損失に基づいて損失関数を最小限に抑えるために訓練されている。
実験により、tDLGMは複雑な時系列データを再構成して生成することができ、ノイズや故障データに対して堅牢であることが示された。
- 参考スコア(独自算出の注目度): 0.40924476987095715
- License:
- Abstract: The development of robust generative models for highly varied non-stationary time series data is a complex yet important problem. Traditional models for time series data prediction, such as Long Short-Term Memory (LSTM), are inefficient and generalize poorly as they cannot capture complex temporal relationships. In this paper, we present a probabilistic generative model that can be trained to capture temporal information, and that is robust to data errors. We call it Time Deep Latent Gaussian Model (tDLGM). Its novel architecture is inspired by Deep Latent Gaussian Model (DLGM). Our model is trained to minimize a loss function based on the negative log loss. One contributing factor to Time Deep Latent Gaussian Model (tDLGM) robustness is our regularizer, which accounts for data trends. Experiments conducted show that tDLGM is able to reconstruct and generate complex time series data, and that it is robust against to noise and faulty data.
- Abstract(参考訳): 高度に変動する非定常時系列データに対する堅牢な生成モデルの開発は、複雑だが重要な問題である。
LSTM(Long Short-Term Memory)のような時系列データ予測の従来のモデルは、複雑な時間的関係を捉えることができないため、非効率で一般化が不十分である。
本稿では,時間的情報を取得するための確率的生成モデルを提案する。
Time Deep Latent Gaussian Model (tDLGM) と呼ぶ。
その新しいアーキテクチャは、Deep Latent Gaussian Model (DLGM)にインスパイアされている。
我々のモデルは、負のログ損失に基づいて損失関数を最小限に抑えるために訓練されている。
Time Deep Latent Gaussian Model (tDLGM)の堅牢性に寄与する要因の1つは、データトレンドを考慮に入れた正規化器である。
実験により、tDLGMは複雑な時系列データを再構成して生成することができ、ノイズや故障データに対して堅牢であることが示された。
関連論文リスト
- Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data [49.73114504515852]
各世代の合成データによって元の実データを置き換えることは、モデル崩壊の傾向にあることを示す。
生成した実データと連続する合成データの蓄積は,モデル崩壊を回避することを実証する。
論文 参考訳(メタデータ) (2024-04-01T18:31:24Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
状態空間ODEに従って進化する潜伏変数を持つ列の生成モデルLS4を提案する。
近年の深層状態空間モデル(S4)に着想を得て,LS4の畳み込み表現を利用して高速化を実現する。
LS4は, 実世界のデータセット上での限界分布, 分類, 予測スコアにおいて, 従来の連続時間生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2022-12-24T15:17:42Z) - Time-series Transformer Generative Adversarial Networks [5.254093731341154]
本稿では,時系列データに特化して生じる制約について考察し,合成時系列を生成するモデルを提案する。
合成時系列データを生成するモデルには,(1)実列の段階的条件分布を捉えること,(2)実列全体の結合分布を忠実にモデル化すること,の2つの目的がある。
TsT-GANは、Transformerアーキテクチャを活用してデシラタを満足させ、その性能を5つのデータセット上の5つの最先端モデルと比較するフレームワークである。
論文 参考訳(メタデータ) (2022-05-23T10:04:21Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Generative time series models using Neural ODE in Variational
Autoencoders [0.0]
生成時系列モデリングのための変分オートエンコーダ設定にニューラル正規微分方程式を実装した。
開発と研究を容易にするために、コードに対するオブジェクト指向のアプローチが採られた。
論文 参考訳(メタデータ) (2022-01-12T14:38:11Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data [1.8352113484137622]
本稿では,散発データにおける複数の時間的特徴をモデル化するための新しい深層学習モデルを提案する。
提案モデルはCARRNNと呼ばれ、時間ラグによって変調されたニューラルネットワークを用いてエンドツーエンドにトレーニング可能な一般化された離散時間自己回帰モデルを使用する。
アルツハイマー病進行モデルおよび集中治療単位(ICU)死亡率予測のためのデータを用いて,多変量時系列回帰タスクに適用した。
論文 参考訳(メタデータ) (2021-04-08T12:43:44Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
時系列データは多くの領域で爆発的な速度で成長し、時系列モデリング研究の急増を刺激している。
データ希少性は、膨大なデータ分析の問題で発生する普遍的な問題です。
論文 参考訳(メタデータ) (2021-03-16T22:16:54Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。