OpenLS-DGF: An Adaptive Open-Source Dataset Generation Framework for Machine Learning Tasks in Logic Synthesis
- URL: http://arxiv.org/abs/2411.09422v2
- Date: Sat, 16 Nov 2024 07:48:26 GMT
- Title: OpenLS-DGF: An Adaptive Open-Source Dataset Generation Framework for Machine Learning Tasks in Logic Synthesis
- Authors: Liwei Ni, Rui Wang, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Guojie Luo, Zhufei Chu, Weikang Qian, Xiaoyan Yang, Biwei Xie, Xingquan Li, Huawei Li,
- Abstract summary: OpenLS-DGF is an adaptive logic synthesis dataset generation framework.
It supports various machine learning tasks by encapsulating the three fundamental steps of logic synthesis.
The generated OpenLS-D-v1 dataset comprises 46 combinational designs from established benchmarks.
- Score: 11.073500440401894
- License:
- Abstract: This paper introduces OpenLS-DGF, an adaptive logic synthesis dataset generation framework, to enhance machine learning~(ML) applications within the logic synthesis process. Previous dataset generation flows were tailored for specific tasks or lacked integrated machine learning capabilities. While OpenLS-DGF supports various machine learning tasks by encapsulating the three fundamental steps of logic synthesis: Boolean representation, logic optimization, and technology mapping. It preserves the original information in both Verilog and machine-learning-friendly GraphML formats. The verilog files offer semi-customizable capabilities, enabling researchers to insert additional steps and incrementally refine the generated dataset. Furthermore, OpenLS-DGF includes an adaptive circuit engine that facilitates the final dataset management and downstream tasks. The generated OpenLS-D-v1 dataset comprises 46 combinational designs from established benchmarks, totaling over 966,000 Boolean circuits. OpenLS-D-v1 supports integrating new data features, making it more versatile for new challenges. This paper demonstrates the versatility of OpenLS-D-v1 through four distinct downstream tasks: circuit classification, circuit ranking, quality of results (QoR) prediction, and probability prediction. Each task is chosen to represent essential steps of logic synthesis, and the experimental results show the generated dataset from OpenLS-DGF achieves prominent diversity and applicability. The source code and datasets are available at https://github.com/Logic-Factory/ACE/blob/master/OpenLS-DGF/readme.md.
Related papers
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - Empirical Insights on Fine-Tuning Large Language Models for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.
We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.
Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - rule4ml: An Open-Source Tool for Resource Utilization and Latency Estimation for ML Models on FPGA [0.0]
This paper introduces a novel method to predict the resource utilization and inference latency of Neural Networks (NNs) before their synthesis and implementation on FPGA.
We leverage HLS4ML, a tool-flow that helps translate NNs into high-level synthesis (HLS) code.
Our method uses trained regression models for immediate pre-synthesis predictions.
arXiv Detail & Related papers (2024-08-09T19:35:10Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator [63.762209407570715]
Genixer is a comprehensive data generation pipeline consisting of four key steps.
A synthetic VQA-like dataset trained with LLaVA1.5 enhances performance on 10 out of 12 multimodal benchmarks.
MLLMs trained with task-specific datasets can surpass GPT-4V in generating complex instruction tuning data.
arXiv Detail & Related papers (2023-12-11T09:44:41Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z) - HLSDataset: Open-Source Dataset for ML-Assisted FPGA Design using High
Level Synthesis [1.7795190822602627]
This paper presents a dataset for ML-assisted FPGA design using HLS, called HLSDataset.
The dataset is generated from widely used HLS C benchmarks including Polybench, Machsuite, CHStone and Rossetta.
The total number of generated Verilog samples is nearly 9,000 per FPGA type.
arXiv Detail & Related papers (2023-02-17T17:00:12Z) - OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated
Circuit Synthesis [10.338357262730863]
OpenABC-D is a large-scale, labeled dataset produced by prototypical open source designs with a leading open-source logic synthesis tool.
We define a generic learning problem on this dataset and benchmark existing solutions.
arXiv Detail & Related papers (2021-10-21T17:19:19Z) - SYNC: A Copula based Framework for Generating Synthetic Data from
Aggregated Sources [8.350531869939351]
We study synthetic data generation task called downscaling.
We propose a multi-stage framework called SYNC (Synthetic Data Generation via Gaussian Copula)
We make four key contributions in this work.
arXiv Detail & Related papers (2020-09-20T16:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.