Long-Tailed Object Detection Pre-training: Dynamic Rebalancing Contrastive Learning with Dual Reconstruction
- URL: http://arxiv.org/abs/2411.09453v1
- Date: Thu, 14 Nov 2024 13:59:01 GMT
- Title: Long-Tailed Object Detection Pre-training: Dynamic Rebalancing Contrastive Learning with Dual Reconstruction
- Authors: Chen-Long Duan, Yong Li, Xiu-Shen Wei, Lin Zhao,
- Abstract summary: We introduce a novel pre-training framework for object detection, called Dynamic Rebalancing Contrastive Learning with Dual Reconstruction (2DRCL)
Our method builds on a Holistic-Local Contrastive Learning mechanism, which aligns pre-training with object detection by capturing both global contextual semantics and detailed local patterns.
Experiments on COCO and LVIS v1.0 datasets demonstrate the effectiveness of our method, particularly in improving the mAP/AP scores for tail classes.
- Score: 28.359463356384463
- License:
- Abstract: Pre-training plays a vital role in various vision tasks, such as object recognition and detection. Commonly used pre-training methods, which typically rely on randomized approaches like uniform or Gaussian distributions to initialize model parameters, often fall short when confronted with long-tailed distributions, especially in detection tasks. This is largely due to extreme data imbalance and the issue of simplicity bias. In this paper, we introduce a novel pre-training framework for object detection, called Dynamic Rebalancing Contrastive Learning with Dual Reconstruction (2DRCL). Our method builds on a Holistic-Local Contrastive Learning mechanism, which aligns pre-training with object detection by capturing both global contextual semantics and detailed local patterns. To tackle the imbalance inherent in long-tailed data, we design a dynamic rebalancing strategy that adjusts the sampling of underrepresented instances throughout the pre-training process, ensuring better representation of tail classes. Moreover, Dual Reconstruction addresses simplicity bias by enforcing a reconstruction task aligned with the self-consistency principle, specifically benefiting underrepresented tail classes. Experiments on COCO and LVIS v1.0 datasets demonstrate the effectiveness of our method, particularly in improving the mAP/AP scores for tail classes.
Related papers
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Alleviating the Effect of Data Imbalance on Adversarial Training [26.36714114672729]
We study adversarial training on datasets that obey the long-tailed distribution.
We propose a new adversarial training framework -- Re-balancing Adversarial Training (REAT)
arXiv Detail & Related papers (2023-07-14T07:01:48Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - DBN-Mix: Training Dual Branch Network Using Bilateral Mixup Augmentation
for Long-Tailed Visual Recognition [7.94190631530826]
We develop a simple yet effective method to improve the performance of DBN without cumulative learning.
We present class-conditional temperature scaling that mitigates bias toward the majority class for the proposed DBN architecture.
arXiv Detail & Related papers (2022-07-05T17:01:27Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Self-Damaging Contrastive Learning [92.34124578823977]
Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
arXiv Detail & Related papers (2021-06-06T00:04:49Z) - Lifelong Learning Without a Task Oracle [13.331659934508764]
Supervised deep neural networks are known to undergo a sharp decline in the accuracy of older tasks when new tasks are learned.
We propose and compare several candidate task-assigning mappers which require very little memory overhead.
Best-performing variants only impose an average cost of 1.7% parameter memory increase.
arXiv Detail & Related papers (2020-11-09T21:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.