Renal Cell Carcinoma subtyping: learning from multi-resolution localization
- URL: http://arxiv.org/abs/2411.09471v1
- Date: Thu, 14 Nov 2024 14:21:49 GMT
- Title: Renal Cell Carcinoma subtyping: learning from multi-resolution localization
- Authors: Mohamad Mohamad, Francesco Ponzio, Santa Di Cataldo, Damien Ambrosetti, Xavier Descombes,
- Abstract summary: This study investigates a novel self supervised training strategy for machine learning diagnostic tools.
We aim at reducing the need of annotated dataset, without significantly reducing the accuracy of the tool.
We demonstrate the classification capability of our tool on a whole slide imaging dataset for Renal Cancer subtyping, and we compare our solution with several state-of-the-art classification counterparts.
- Score: 1.5728609542259502
- License:
- Abstract: Renal Cell Carcinoma is typically asymptomatic at the early stages for many patients. This leads to a late diagnosis of the tumor, where the curability likelihood is lower, and makes the mortality rate of Renal Cell Carcinoma high, with respect to its incidence rate. To increase the survival chance, a fast and correct categorization of the tumor subtype is paramount. Nowadays, computerized methods, based on artificial intelligence, represent an interesting opportunity to improve the productivity and the objectivity of the microscopy-based Renal Cell Carcinoma diagnosis. Nonetheless, much of their exploitation is hampered by the paucity of annotated dataset, essential for a proficient training of supervised machine learning technologies. This study sets out to investigate a novel self supervised training strategy for machine learning diagnostic tools, based on the multi-resolution nature of the histological samples. We aim at reducing the need of annotated dataset, without significantly reducing the accuracy of the tool. We demonstrate the classification capability of our tool on a whole slide imaging dataset for Renal Cancer subtyping, and we compare our solution with several state-of-the-art classification counterparts.
Related papers
- Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Let it shine: Autofluorescence of Papanicolaou-stain improves AI-based cytological oral cancer detection [3.1850395068284785]
Oral cancer is treatable if detected early, but it is often fatal in late stages.
Computer-assisted methods are essential for cost-effective and accurate cytological analysis.
This study aims to improve AI-based oral cancer detection using multimodal imaging and deep fusion.
arXiv Detail & Related papers (2024-07-02T01:05:35Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Machine-Learning-based Colorectal Tissue Classification via Acoustic
Resolution Photoacoustic Microscopy [3.916910844026426]
Colonoscopy cannot provide detailed information within the tissues affected by cancer, while biopsy involves tissue removal, which can be painful and invasive.
We studied machine-learning approach for colorectal tissue classification that uses acoustic resolution photoacoustic microscopy (ARPAM)
Our results were analyzed both quantitatively and qualitatively to evaluate the effectiveness of our approach.
arXiv Detail & Related papers (2023-07-17T15:15:26Z) - Robust Tumor Detection from Coarse Annotations via Multi-Magnification
Ensembles [11.070094685209598]
We present a novel ensemble method that significantly improves the detection accuracy of metastasis on the open CAMELYON16 data set of sentinel lymph nodes of breast cancer patients.
Our experiments show that better results can be achieved with our technique making it clinically feasible to use for cancer diagnosis.
arXiv Detail & Related papers (2023-03-29T08:41:22Z) - Weakly-supervised learning for image-based classification of primary
melanomas into genomic immune subgroups [1.4585861543119112]
We develop deep learning models to classify gigapixel H&E stained pathology slides into immune subgroups.
We leverage a multiple-instance learning approach, which only requires slide-level labels and uses an attention mechanism to highlight regions of high importance to the classification.
arXiv Detail & Related papers (2022-02-23T13:57:35Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.