LLaMA-Mesh: Unifying 3D Mesh Generation with Language Models
- URL: http://arxiv.org/abs/2411.09595v1
- Date: Thu, 14 Nov 2024 17:08:23 GMT
- Title: LLaMA-Mesh: Unifying 3D Mesh Generation with Language Models
- Authors: Zhengyi Wang, Jonathan Lorraine, Yikai Wang, Hang Su, Jun Zhu, Sanja Fidler, Xiaohui Zeng,
- Abstract summary: This work explores expanding the capabilities of large language models (LLMs) pretrained on text to generate 3D meshes within a unified model.
A primary challenge is effectively tokenizing 3D mesh data into discrete tokens that LLMs can process seamlessly.
Our work is the first to demonstrate that LLMs can be fine-tuned to acquire complex spatial knowledge for 3D mesh generation in a text-based format.
- Score: 62.85566496673856
- License:
- Abstract: This work explores expanding the capabilities of large language models (LLMs) pretrained on text to generate 3D meshes within a unified model. This offers key advantages of (1) leveraging spatial knowledge already embedded in LLMs, derived from textual sources like 3D tutorials, and (2) enabling conversational 3D generation and mesh understanding. A primary challenge is effectively tokenizing 3D mesh data into discrete tokens that LLMs can process seamlessly. To address this, we introduce LLaMA-Mesh, a novel approach that represents the vertex coordinates and face definitions of 3D meshes as plain text, allowing direct integration with LLMs without expanding the vocabulary. We construct a supervised fine-tuning (SFT) dataset enabling pretrained LLMs to (1) generate 3D meshes from text prompts, (2) produce interleaved text and 3D mesh outputs as required, and (3) understand and interpret 3D meshes. Our work is the first to demonstrate that LLMs can be fine-tuned to acquire complex spatial knowledge for 3D mesh generation in a text-based format, effectively unifying the 3D and text modalities. LLaMA-Mesh achieves mesh generation quality on par with models trained from scratch while maintaining strong text generation performance.
Related papers
- More Text, Less Point: Towards 3D Data-Efficient Point-Language Understanding [22.753452376062565]
GreenPLM aims to enable robust 3D object understanding with minimal 3D point cloud and text data pairs.
Inspired by CLIP to align images and text, we utilize a pre-trained point cloud-text encoder to map the 3D point cloud space to the text space.
We generate 6M free-text descriptions of 3D objects, and design a three-stage training strategy to help LLMs better explore the intrinsic connections between different modalities.
arXiv Detail & Related papers (2024-08-28T17:38:44Z) - VP-LLM: Text-Driven 3D Volume Completion with Large Language Models through Patchification [56.211321810408194]
Large language models (LLMs) have shown great potential in multi-modal understanding and generation tasks.
We present Volume Patch LLM (VP-LLM), which leverages LLMs to perform conditional 3D completion in a single-forward pass.
Our results demonstrate a strong ability of LLMs to interpret complex text instructions and understand 3D objects, surpassing state-of-the-art diffusion-based 3D completion models in generation quality.
arXiv Detail & Related papers (2024-06-08T18:17:09Z) - Grounded 3D-LLM with Referent Tokens [58.890058568493096]
We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats.
arXiv Detail & Related papers (2024-05-16T18:03:41Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
This survey provides a comprehensive overview of the methodologies enabling large language models to process, understand, and generate 3D data.
Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs)
It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue.
arXiv Detail & Related papers (2024-05-16T16:59:58Z) - LiDAR-LLM: Exploring the Potential of Large Language Models for 3D LiDAR
Understanding [36.66305190056456]
Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have shown promise in instruction following and 2D image understanding.
In this paper, we introduce LiDAR-LLM, which takes raw LiDAR data as input and harnesses the remarkable reasoning capabilities of LLMs.
The central insight of our LiDAR-LLM is the reformulation of 3D outdoor scene cognition as a language modeling problem.
arXiv Detail & Related papers (2023-12-21T17:52:12Z) - GPT4Point: A Unified Framework for Point-Language Understanding and
Generation [76.61439685940272]
GPT4Point is a groundbreaking point-language multimodal model for unified 3D object understanding and generation within the MLLM framework.
GPT4Point as a powerful 3D MLLM seamlessly can execute a variety of point-text reference tasks such as point-cloud captioning and Q&A.
It can get high-quality results through a low-quality point-text feature maintaining the geometric shapes and colors.
arXiv Detail & Related papers (2023-12-05T18:59:55Z) - 3D-GPT: Procedural 3D Modeling with Large Language Models [47.72968643115063]
We introduce 3D-GPT, a framework utilizing large language models(LLMs) for instruction-driven 3D modeling.
3D-GPT positions LLMs as proficient problem solvers, dissecting the procedural 3D modeling tasks into accessible segments and appointing the apt agent for each task.
Our empirical investigations confirm that 3D-GPT not only interprets and executes instructions, delivering reliable results but also collaborates effectively with human designers.
arXiv Detail & Related papers (2023-10-19T17:41:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.