MCCE: Missingness-aware Causal Concept Explainer
- URL: http://arxiv.org/abs/2411.09639v1
- Date: Thu, 14 Nov 2024 18:03:44 GMT
- Title: MCCE: Missingness-aware Causal Concept Explainer
- Authors: Jifan Gao, Guanhua Chen,
- Abstract summary: We introduce the Missingness-aware Causal Concept Explainer (MCCE) to estimate causal concept effects when not all concepts are observable.
Our framework learns to account for residual bias resulting from missing concepts and utilizes a linear predictor to model the relationships between these concepts and the outputs of black-box machine learning models.
We conduct validations using a real-world dataset, demonstrating that MCCE achieves promising performance compared to state-of-the-art explanation methods in causal concept effect estimation.
- Score: 4.56242146925245
- License:
- Abstract: Causal concept effect estimation is gaining increasing interest in the field of interpretable machine learning. This general approach explains the behaviors of machine learning models by estimating the causal effect of human-understandable concepts, which represent high-level knowledge more comprehensibly than raw inputs like tokens. However, existing causal concept effect explanation methods assume complete observation of all concepts involved within the dataset, which can fail in practice due to incomplete annotations or missing concept data. We theoretically demonstrate that unobserved concepts can bias the estimation of the causal effects of observed concepts. To address this limitation, we introduce the Missingness-aware Causal Concept Explainer (MCCE), a novel framework specifically designed to estimate causal concept effects when not all concepts are observable. Our framework learns to account for residual bias resulting from missing concepts and utilizes a linear predictor to model the relationships between these concepts and the outputs of black-box machine learning models. It can offer explanations on both local and global levels. We conduct validations using a real-world dataset, demonstrating that MCCE achieves promising performance compared to state-of-the-art explanation methods in causal concept effect estimation.
Related papers
- MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPred is proposed that explains its predictions based on multi-modal concepts represented by training samples.
MulCPred is evaluated on multiple datasets and tasks.
arXiv Detail & Related papers (2024-09-14T14:15:28Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Evaluating Readability and Faithfulness of Concept-based Explanations [35.48852504832633]
Concept-based explanations arise as a promising avenue for explaining high-level patterns learned by Large Language Models.
Current methods approach concepts from different perspectives, lacking a unified formalization.
This makes evaluating the core measures of concepts, namely faithfulness or readability, challenging.
arXiv Detail & Related papers (2024-04-29T09:20:25Z) - DiConStruct: Causal Concept-based Explanations through Black-Box
Distillation [9.735426765564474]
We present DiConStruct, an explanation method that is both concept-based and causal.
Our explainer works as a distillation model to any black-box machine learning model by approximating its predictions while producing the respective explanations.
arXiv Detail & Related papers (2024-01-16T17:54:02Z) - Do Concept Bottleneck Models Respect Localities? [14.77558378567965]
Concept-based methods explain model predictions using human-understandable concepts.
"Localities" involve using only relevant features when predicting a concept's value.
CBMs may not capture localities, even when independent concepts are localised to non-overlapping feature subsets.
arXiv Detail & Related papers (2024-01-02T16:05:23Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
Generalized compositional zero-shot learning means to learn composed concepts of attribute-object pairs in a zero-shot fashion.
This paper introduces a new approach, termed translational concept embedding, to solve these two difficulties in a unified framework.
arXiv Detail & Related papers (2021-12-20T21:27:51Z) - Promises and Pitfalls of Black-Box Concept Learning Models [26.787383014558802]
We show that machine learning models that incorporate concept learning encode information beyond the pre-defined concepts.
Natural mitigation strategies do not fully work, rendering the interpretation of the downstream prediction misleading.
arXiv Detail & Related papers (2021-06-24T21:00:28Z) - Debiasing Concept-based Explanations with Causal Analysis [4.911435444514558]
We study the problem of the concepts being correlated with confounding information in the features.
We propose a new causal prior graph for modeling the impacts of unobserved variables.
We show that our debiasing method works when the concepts are not complete.
arXiv Detail & Related papers (2020-07-22T15:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.