Letting the tiger out of its cage: bosonic coding without concatenation
- URL: http://arxiv.org/abs/2411.09668v1
- Date: Thu, 14 Nov 2024 18:38:33 GMT
- Title: Letting the tiger out of its cage: bosonic coding without concatenation
- Authors: Yijia Xu, Yixu Wang, Christophe Vuillot, Victor V. Albert,
- Abstract summary: Cat codes are encodings into a single photonic or phononic mode that offer a promising avenue for hardware-efficient fault-tolerant quantum computation.
We construct multimode codes with similar linear constraints using any two integer matrices satisfying the homological condition of a quantum rotor code.
Just like the pair-cat code, syndrome extraction can be performed in tandem with stabilizing dissipation using current superconducting-circuit designs.
- Score: 3.2055955766884465
- License:
- Abstract: Continuous-variable cat codes are encodings into a single photonic or phononic mode that offer a promising avenue for hardware-efficient fault-tolerant quantum computation. Protecting information in a cat code requires measuring the mode's occupation number modulo two, but this can be relaxed to a linear occupation-number constraint using the alternative two-mode pair-cat encoding. We construct multimode codes with similar linear constraints using any two integer matrices satisfying the homological condition of a quantum rotor code. Just like the pair-cat code, syndrome extraction can be performed in tandem with stabilizing dissipation using current superconducting-circuit designs. The framework includes codes with various finite- or infinite-dimensional codespaces, and codes with finite or infinite Fock-state support. It encompasses two-component cat, pair-cat, dual-rail, two-mode binomial, various bosonic repetition codes, and aspects of chi-squared encodings while also yielding codes from homological products, lattices, generalized coherent states, and algebraic varieties. Among our examples are analogues of repetition codes, the Shor code, and a surface-like code that is not a concatenation of a known cat code with the qubit surface code. Codewords are coherent states projected into a Fock-state subspace defined by an integer matrix, and their overlaps are governed by Gelfand-Kapranov-Zelevinsky hypergeometric functions.
Related papers
- Decoding Quasi-Cyclic Quantum LDPC Codes [23.22566380210149]
Quantum low-density parity-check (qLDPC) codes are an important component in the quest for fault tolerance.
Recent progress on qLDPC codes has led to constructions which are quantumally good, and which admit linear-time decoders to correct errors affecting a constant fraction of codeword qubits.
In practice, the surface/toric codes, which are the product of two repetition codes, are still often the qLDPC codes of choice.
arXiv Detail & Related papers (2024-11-07T06:25:27Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Spatially-Coupled QDLPC Codes [3.6622737533847936]
We describe toric codes as quantum counterparts of classical spatially-coupled (2D-SC) codes.
We introduce spatially-coupled quantum LDPC (SC-QLDPC) codes as a class of convolutional LDPC codes.
This paper focuses on QLDPC codes with rate less than 1/10, but we construct 2D-SC HGP codes with small memories, higher rates (about 1/3), and superior thresholds.
arXiv Detail & Related papers (2023-04-29T00:57:57Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Quantum Lego: Building Quantum Error Correction Codes from Tensor
Networks [0.0]
We represent complex code constructions as tensor networks built from the tensors of simple codes or states.
The framework endows a network geometry to any code it builds and is valid for constructing stabilizer codes.
We lay out some examples where we glue together simple stabilizer codes to construct non-trivial codes.
arXiv Detail & Related papers (2021-09-16T18:00:00Z) - KO codes: Inventing Nonlinear Encoding and Decoding for Reliable
Wireless Communication via Deep-learning [76.5589486928387]
Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC and Polar codes.
In this paper, we construct KO codes, a computationaly efficient family of deep-learning driven (encoder, decoder) pairs.
KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding.
arXiv Detail & Related papers (2021-08-29T21:08:30Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
We show that trellis decoders have strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed.
The modified decoder works for any stabilizer code $S$ and separates into two parts: a one-time, offline which builds a compact, graphical representation of the normalizer of the code, $Sperp$, and a quick, parallel, online computation using the Viterbi algorithm.
arXiv Detail & Related papers (2021-06-15T16:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.