AI-Driven Feedback Loops in Digital Technologies: Psychological Impacts on User Behaviour and Well-Being
- URL: http://arxiv.org/abs/2411.09706v1
- Date: Wed, 30 Oct 2024 17:11:30 GMT
- Title: AI-Driven Feedback Loops in Digital Technologies: Psychological Impacts on User Behaviour and Well-Being
- Authors: Anthonette Adanyin,
- Abstract summary: This study aims to investigate the positive and negative psychological consequences of feedback mechanisms on users' behaviour and well-being.
Data-driven feedback loops deliver not only motivational benefits but also psychological challenges.
To mitigate these risks, users should establish boundaries regarding their use of technology to prevent burnout and addiction.
- Score: 0.0
- License:
- Abstract: The rapid spread of digital technologies has produced data-driven feedback loops, wearable devices, social media networks, and mobile applications that shape user behavior, motivation, and mental well-being. While these systems encourage self-improvement and the development of healthier habits through real-time feedback, they also create psychological risks such as technostress, addiction, and loss of autonomy. The present study also aims to investigate the positive and negative psychological consequences of feedback mechanisms on users' behaviour and well-being. Employing a descriptive survey method, the study collected data from 200 purposely selected users to assess changes in behaviour, motivation, and mental well-being related to health, social, and lifestyle applications. Results indicate that while feedback mechanisms facilitate goal attainment and social interconnection through streaks and badges, among other components, they also enhance anxiety, mental weariness, and loss of productivity due to actions that are considered feedback-seeking. Furthermore, test subjects reported that their actions are unconsciously shaped by app feedback, often at the expense of personal autonomy, while real-time feedback minimally influences professional or social interactions. The study shows that data-driven feedback loops deliver not only motivational benefits but also psychological challenges. To mitigate these risks, users should establish boundaries regarding their use of technology to prevent burnout and addiction, while developers need to refine feedback mechanisms to reduce cognitive load and foster more inclusive participation. Future research should focus on designing feedback mechanisms that promote well-being without compromising individual freedom or increasing social comparison.
Related papers
- EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
This work explores the utilization of Romanized Sinhala social media data to identify individuals at risk of depression.
A machine learning-based framework is presented for the automatic screening of depression symptoms by analyzing language patterns, sentiment, and behavioural cues.
arXiv Detail & Related papers (2024-03-28T10:31:09Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - The Role of Likes: How Online Feedback Impacts Users' Mental Health [1.0156836684627544]
We analyse the impact of receiving online feedback on users' emotional experience, social connectedness and self-esteem.
We find that experiencing little to no reaction from others does not only elicit negative emotions amongst users, but also induces low levels of self-esteem.
In contrast, receiving much positive online feedback, evokes feelings of social connectedness and reduces overall loneliness.
arXiv Detail & Related papers (2023-12-19T07:48:10Z) - Facilitating Self-Guided Mental Health Interventions Through Human-Language Model Interaction: A Case Study of Cognitive Restructuring [8.806947407907137]
We study how human-language model interaction can support self-guided mental health interventions.
We design and evaluate a system that uses language models to support people through various steps of cognitive restructuring.
arXiv Detail & Related papers (2023-10-24T02:23:34Z) - Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
We develop an interactive social robot exercise coaching system for personalized rehabilitation.
This system integrates a neural network model with a rule-based model to automatically monitor and assess patients' rehabilitation exercises.
Our system can adapt to new participants and achieved 0.81 average performance to assess their exercises, which is comparable to the experts' agreement level.
arXiv Detail & Related papers (2023-05-12T17:37:04Z) - Affective Idiosyncratic Responses to Music [63.969810774018775]
We develop methods to measure affective responses to music from over 403M listener comments on a Chinese social music platform.
We test for musical, lyrical, contextual, demographic, and mental health effects that drive listener affective responses.
arXiv Detail & Related papers (2022-10-17T19:57:46Z) - What's on your mind? A Mental and Perceptual Load Estimation Framework
towards Adaptive In-vehicle Interaction while Driving [55.41644538483948]
We analyze the effects of mental workload and perceptual load on psychophysiological dimensions.
We classify the mental and perceptual load levels through the fusion of these measurements.
We report up to 89% mental workload classification accuracy and provide a real-time minimally-intrusive solution.
arXiv Detail & Related papers (2022-08-10T21:19:49Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - A Robotic Positive Psychology Coach to Improve College Students'
Wellbeing [16.70932067272569]
We investigate the use of a social robot coach to deliver positive psychology interventions to college students living in on-campus dormitories.
We found a statistically significant improvement in participants' psychological wellbeing, mood, and readiness to change behavior for improved wellbeing after they completed the study.
Students' personality traits were found to have a significant association with intervention efficacy.
arXiv Detail & Related papers (2020-09-08T15:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.