Beyond Static Tools: Evaluating Large Language Models for Cryptographic Misuse Detection
- URL: http://arxiv.org/abs/2411.09772v1
- Date: Thu, 14 Nov 2024 19:33:08 GMT
- Title: Beyond Static Tools: Evaluating Large Language Models for Cryptographic Misuse Detection
- Authors: Zohaib Masood, Miguel Vargas Martin,
- Abstract summary: GPT 4-o-mini surpasses current state-of-the-art static analysis tools on the CryptoAPI and MASC datasets.
This study highlights the comparative strengths and limitations of static analysis versus LLM-driven approaches.
- Score: 0.30693357740321775
- License:
- Abstract: The use of Large Language Models (LLMs) in software development is rapidly growing, with developers increasingly relying on these models for coding assistance, including security-critical tasks. Our work presents a comprehensive comparison between traditional static analysis tools for cryptographic API misuse detection-CryptoGuard, CogniCrypt, and Snyk Code-and the LLMs-GPT and Gemini. Using benchmark datasets (OWASP, CryptoAPI, and MASC), we evaluate the effectiveness of each tool in identifying cryptographic misuses. Our findings show that GPT 4-o-mini surpasses current state-of-the-art static analysis tools on the CryptoAPI and MASC datasets, though it lags on the OWASP dataset. Additionally, we assess the quality of LLM responses to determine which models provide actionable and accurate advice, giving developers insights into their practical utility for secure coding. This study highlights the comparative strengths and limitations of static analysis versus LLM-driven approaches, offering valuable insights into the evolving role of AI in advancing software security practices.
Related papers
- Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.
MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.
Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
Large Language Models (LLMs) are emerging as transformative tools for software vulnerability detection.
This paper provides a detailed survey of LLMs in vulnerability detection.
We address challenges such as cross-language vulnerability detection, multimodal data integration, and repository-level analysis.
arXiv Detail & Related papers (2025-02-10T21:33:38Z) - SnipGen: A Mining Repository Framework for Evaluating LLMs for Code [51.07471575337676]
Language Models (LLMs) are trained on extensive datasets that include code repositories.
evaluating their effectiveness poses significant challenges due to the potential overlap between the datasets used for training and those employed for evaluation.
We introduce SnipGen, a comprehensive repository mining framework designed to leverage prompt engineering across various downstream tasks for code generation.
arXiv Detail & Related papers (2025-02-10T21:28:15Z) - Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
Large Language Models (LLMs) have become a focal point of research across various domains.
This paper investigates the impact of characteristics and learning paradigms on the performance of 12 open-source LLMs in log level suggestion.
arXiv Detail & Related papers (2024-10-11T03:52:17Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
This paper thoroughly analyses large language models' capabilities in detecting vulnerabilities within source code.
We evaluate the performance of six open-source models that are specifically trained for vulnerability detection against six general-purpose LLMs.
arXiv Detail & Related papers (2024-08-29T10:00:57Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
We introduce MSIVD, multitask self-instructed fine-tuning for vulnerability detection, inspired by chain-of-thought prompting and LLM self-instruction.
Our experiments demonstrate that MSIVD achieves superior performance, outperforming the highest LLM-based vulnerability detector baseline (LineVul) with a F1 score of 0.92 on the BigVul dataset, and 0.48 on the PreciseBugs dataset.
arXiv Detail & Related papers (2024-06-09T19:18:05Z) - Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking Study [1.03590082373586]
We propose using large language models (LLMs) to assist in finding vulnerabilities in source code.
The aim is to test multiple state-of-the-art LLMs and identify the best prompting strategies.
We find that LLMs can pinpoint many more issues than traditional static analysis tools, outperforming traditional tools in terms of recall and F1 scores.
arXiv Detail & Related papers (2024-05-24T14:59:19Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers.
This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of large language models.
Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization.
arXiv Detail & Related papers (2024-02-10T11:14:53Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
We evaluate the effectiveness of 16 pre-trained Large Language Models on 5,000 code samples from five diverse security datasets.
Overall, LLMs show modest effectiveness in detecting vulnerabilities, obtaining an average accuracy of 62.8% and F1 score of 0.71 across datasets.
We find that advanced prompting strategies that involve step-by-step analysis significantly improve performance of LLMs on real-world datasets in terms of F1 score (by upto 0.18 on average)
arXiv Detail & Related papers (2023-11-16T13:17:20Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.