Evaluating Loss Landscapes from a Topology Perspective
- URL: http://arxiv.org/abs/2411.09807v1
- Date: Thu, 14 Nov 2024 20:46:26 GMT
- Title: Evaluating Loss Landscapes from a Topology Perspective
- Authors: Tiankai Xie, Caleb Geniesse, Jiaqing Chen, Yaoqing Yang, Dmitriy Morozov, Michael W. Mahoney, Ross Maciejewski, Gunther H. Weber,
- Abstract summary: We characterize the underlying shape (or topology) of loss landscapes, quantifying the topology to reveal new insights about neural networks.
To relate our findings to the machine learning (ML) literature, we compute simple performance metrics.
We show how quantifying the shape of loss landscapes can provide new insights into model performance and learning dynamics.
- Score: 43.25939653609482
- License:
- Abstract: Characterizing the loss of a neural network with respect to model parameters, i.e., the loss landscape, can provide valuable insights into properties of that model. Various methods for visualizing loss landscapes have been proposed, but less emphasis has been placed on quantifying and extracting actionable and reproducible insights from these complex representations. Inspired by powerful tools from topological data analysis (TDA) for summarizing the structure of high-dimensional data, here we characterize the underlying shape (or topology) of loss landscapes, quantifying the topology to reveal new insights about neural networks. To relate our findings to the machine learning (ML) literature, we compute simple performance metrics (e.g., accuracy, error), and we characterize the local structure of loss landscapes using Hessian-based metrics (e.g., largest eigenvalue, trace, eigenvalue spectral density). Following this approach, we study established models from image pattern recognition (e.g., ResNets) and scientific ML (e.g., physics-informed neural networks), and we show how quantifying the shape of loss landscapes can provide new insights into model performance and learning dynamics.
Related papers
- Visualizing Loss Functions as Topological Landscape Profiles [41.15010759601887]
In machine learning, a loss function measures the difference between model predictions and ground-truth (or target) values.
For neural network models, visualizing how this loss changes as model parameters are varied can provide insights into the local structure of the so-called loss landscape.
This paper introduces a new representation based on topological data analysis that enables the visualization of higher-dimensional loss landscapes.
arXiv Detail & Related papers (2024-11-19T00:28:14Z) - Sparse Modelling for Feature Learning in High Dimensional Data [0.0]
This paper presents an innovative approach to dimensionality reduction and feature extraction in high-dimensional datasets.
The proposed framework integrates sparse modeling techniques into a comprehensive pipeline for efficient and interpretable feature selection.
We aim to advance the understanding and application of sparse modeling in machine learning, particularly in the context of wood surface defect detection.
arXiv Detail & Related papers (2024-09-28T14:17:59Z) - Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes [0.0]
We theoretically analyze the convergence of the loss landscape in a fully connected neural network and derive upper bounds for the difference in loss function values when adding a new object to the sample.
Our empirical study confirms these results on various datasets, demonstrating the convergence of the loss function surface for image classification tasks.
arXiv Detail & Related papers (2024-09-18T14:04:15Z) - Automatic Discovery of Visual Circuits [66.99553804855931]
We explore scalable methods for extracting the subgraph of a vision model's computational graph that underlies recognition of a specific visual concept.
We find that our approach extracts circuits that causally affect model output, and that editing these circuits can defend large pretrained models from adversarial attacks.
arXiv Detail & Related papers (2024-04-22T17:00:57Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
We show how to explore high-dimensional landscape characteristics of neural networks.
We generalize observations on small neural networks to more complex systems.
An interactive dashboard opens up a number of possible application networks.
arXiv Detail & Related papers (2022-04-09T16:41:53Z) - Taxonomizing local versus global structure in neural network loss
landscapes [60.206524503782006]
We show that the best test accuracy is obtained when the loss landscape is globally well-connected.
We also show that globally poorly-connected landscapes can arise when models are small or when they are trained to lower quality data.
arXiv Detail & Related papers (2021-07-23T13:37:14Z) - Extracting Global Dynamics of Loss Landscape in Deep Learning Models [0.0]
We present a toolkit for the Dynamical Organization Of Deep Learning Loss Landscapes, or DOODL3.
DOODL3 formulates the training of neural networks as a dynamical system, analyzes the learning process, and presents an interpretable global view of trajectories in the loss landscape.
arXiv Detail & Related papers (2021-06-14T18:07:05Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.