Learning Parameter Sharing with Tensor Decompositions and Sparsity
- URL: http://arxiv.org/abs/2411.09816v1
- Date: Thu, 14 Nov 2024 21:29:58 GMT
- Title: Learning Parameter Sharing with Tensor Decompositions and Sparsity
- Authors: Cem Üyük, Mike Lasby, Mohamed Yassin, Utku Evci, Yani Ioannou,
- Abstract summary: This paper introduces Finegrained compress Sharing (FiPS), a novel algorithm to efficiently compress large vision transformer models.
FiPS employs a shared base and sparse factors to represent shared neurons across multi-layer perception modules.
Experiments demonstrate that FiPS compresses Dei-B and Swin-LTs to 25-40% of their original parameter count while maintaining accuracy within 1 percentage point of the original models.
- Score: 5.73573685846194
- License:
- Abstract: Large neural networks achieve remarkable performance, but their size hinders deployment on resource-constrained devices. While various compression techniques exist, parameter sharing remains relatively unexplored. This paper introduces Fine-grained Parameter Sharing (FiPS), a novel algorithm that leverages the relationship between parameter sharing, tensor decomposition, and sparsity to efficiently compress large vision transformer models. FiPS employs a shared base and sparse factors to represent shared neurons across multi-layer perception (MLP) modules. Shared parameterization is initialized via Singular Value Decomposition (SVD) and optimized by minimizing block-wise reconstruction error. Experiments demonstrate that FiPS compresses DeiT-B and Swin-L MLPs to 25-40% of their original parameter count while maintaining accuracy within 1 percentage point of the original models.
Related papers
- Convolutional Neural Network Compression Based on Low-Rank Decomposition [3.3295360710329738]
This paper proposes a model compression method that integrates Variational Bayesian Matrix Factorization.
VBMF is employed to estimate the rank of the weight tensor at each layer.
Experimental results show that for both high and low compression ratios, our compression model exhibits advanced performance.
arXiv Detail & Related papers (2024-08-29T06:40:34Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - MoEUT: Mixture-of-Experts Universal Transformers [75.96744719516813]
Universal Transformers (UTs) have advantages over standard Transformers in learning compositional generalizations.
Layer-sharing drastically reduces the parameter count compared to the non-shared model with the same dimensionality.
No previous work has succeeded in proposing a shared-layer Transformer design that is competitive in parameter count-dominated tasks such as language modeling.
arXiv Detail & Related papers (2024-05-25T03:24:32Z) - Memory-Efficient Vision Transformers: An Activation-Aware Mixed-Rank
Compression Strategy [5.699098817569033]
This paper introduces an activation-aware model compression methodology that uses selective low-rank weight tensor approximations of different layers to reduce the parameter count of ViTs.
The presented method significantly reduces the parameter count of DeiT-B by 60% with less than 1% accuracy drop on the ImageNet dataset.
In addition to this, the presented compression technique can compress large DeiT/ViT models to have about the same model size as smaller DeiT/ViT variants while yielding up to 1.8% accuracy gain.
arXiv Detail & Related papers (2024-02-08T19:01:14Z) - Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model [81.55141188169621]
We equip PEFT with a cross-block orchestration mechanism to enable the adaptation of the Segment Anything Model (SAM) to various downstream scenarios.
We propose an intra-block enhancement module, which introduces a linear projection head whose weights are generated from a hyper-complex layer.
Our proposed approach consistently improves the segmentation performance significantly on novel scenarios with only around 1K additional parameters.
arXiv Detail & Related papers (2023-11-28T11:23:34Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of
Large-Scale Pre-Trained Language Models [19.640997611256168]
We propose AlphaTuning, consisting of post-training quantization of the pre-trained language model and fine-tuning only some parts of quantized parameters for a target task.
Specifically, AlphaTuning works by employing binary-coding quantization, which factorizes the full-precision parameters into binary parameters and a separate set of scaling factors.
We demonstrate that AlphaTuning, when applied to GPT-2 and OPT, performs competitively with full fine-tuning on a variety of downstream tasks while achieving >10x compression ratio under 4-bit quantization and >1,000x reduction in the number of trainable parameters.
arXiv Detail & Related papers (2022-10-08T00:36:00Z) - Parameter-Efficient Conformers via Sharing Sparsely-Gated Experts for
End-to-End Speech Recognition [17.73449206184214]
This paper proposes a parameter-efficient conformer via sharing sparsely-gated experts.
Specifically, we use sparsely-gated mixture-of-experts (MoE) to extend the capacity of a conformer block without increasing.
arXiv Detail & Related papers (2022-09-17T13:22:19Z) - Automatic Mixed-Precision Quantization Search of BERT [62.65905462141319]
Pre-trained language models such as BERT have shown remarkable effectiveness in various natural language processing tasks.
These models usually contain millions of parameters, which prevents them from practical deployment on resource-constrained devices.
We propose an automatic mixed-precision quantization framework designed for BERT that can simultaneously conduct quantization and pruning in a subgroup-wise level.
arXiv Detail & Related papers (2021-12-30T06:32:47Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - A Variational Information Bottleneck Based Method to Compress Sequential
Networks for Human Action Recognition [9.414818018857316]
We propose a method to effectively compress Recurrent Neural Networks (RNNs) used for Human Action Recognition (HAR)
We use a Variational Information Bottleneck (VIB) theory-based pruning approach to limit the information flow through the sequential cells of RNNs to a small subset.
We combine our pruning method with a specific group-lasso regularization technique that significantly improves compression.
It is shown that our method achieves over 70 times greater compression than the nearest competitor with comparable accuracy for the task of action recognition on UCF11.
arXiv Detail & Related papers (2020-10-03T12:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.