tCURLoRA: Tensor CUR Decomposition Based Low-Rank Parameter Adaptation and Its Application in Medical Image Segmentation
- URL: http://arxiv.org/abs/2501.02227v2
- Date: Thu, 09 Jan 2025 08:59:41 GMT
- Title: tCURLoRA: Tensor CUR Decomposition Based Low-Rank Parameter Adaptation and Its Application in Medical Image Segmentation
- Authors: Guanghua He, Wangang Cheng, Hancan Zhu, Xiaohao Cai, Gaohang Yu,
- Abstract summary: Transfer learning, by leveraging knowledge from pre-trained models, has significantly enhanced the performance of target tasks.
As deep neural networks scale up, full fine-tuning introduces substantial computational and storage challenges.
We propose tCURLoRA, a novel fine-tuning method based on tensor CUR decomposition.
- Score: 1.3281936946796913
- License:
- Abstract: Transfer learning, by leveraging knowledge from pre-trained models, has significantly enhanced the performance of target tasks. However, as deep neural networks scale up, full fine-tuning introduces substantial computational and storage challenges in resource-constrained environments, limiting its widespread adoption. To address this, parameter-efficient fine-tuning (PEFT) methods have been developed to reduce computational complexity and storage requirements by minimizing the number of updated parameters. While matrix decomposition-based PEFT methods, such as LoRA, show promise, they struggle to fully capture the high-dimensional structural characteristics of model weights. In contrast, high-dimensional tensors offer a more natural representation of neural network weights, allowing for a more comprehensive capture of higher-order features and multi-dimensional interactions. In this paper, we propose tCURLoRA, a novel fine-tuning method based on tensor CUR decomposition. By concatenating pre-trained weight matrices into a three-dimensional tensor and applying tensor CUR decomposition, we update only the lower-order tensor components during fine-tuning, effectively reducing computational and storage overhead. Experimental results demonstrate that tCURLoRA outperforms existing PEFT methods in medical image segmentation tasks.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.
We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.
Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Convolutional Neural Network Compression Based on Low-Rank Decomposition [3.3295360710329738]
This paper proposes a model compression method that integrates Variational Bayesian Matrix Factorization.
VBMF is employed to estimate the rank of the weight tensor at each layer.
Experimental results show that for both high and low compression ratios, our compression model exhibits advanced performance.
arXiv Detail & Related papers (2024-08-29T06:40:34Z) - Post-Training Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition [2.6820435361998918]
We propose a post-training Tucker factorization that enables the decomposition of pre-existing models to reduce computational requirements without impeding segmentation accuracy.
Our approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality.
arXiv Detail & Related papers (2024-04-15T11:36:31Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - STN: Scalable Tensorizing Networks via Structure-Aware Training and
Adaptive Compression [10.067082377396586]
We propose Scalableizing Networks (STN), which adaptively adjust the model size and decomposition structure without retraining.
STN is compatible with arbitrary network architectures and achieves higher compression performance and flexibility over other tensorizing versions.
arXiv Detail & Related papers (2022-05-30T15:50:48Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Spectral Tensor Train Parameterization of Deep Learning Layers [136.4761580842396]
We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context.
We show the effects of neural network compression in the classification setting and both compression and improved stability training in the generative adversarial training setting.
arXiv Detail & Related papers (2021-03-07T00:15:44Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
We introduce a "fully tensorized" RNN architecture which jointly encodes the separate weight matrices within each recurrent cell.
This approach reduces model size by several orders of magnitude, while still maintaining similar or better performance compared to standard RNNs.
arXiv Detail & Related papers (2020-10-08T18:24:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.