Physics-informed Machine Learning for Battery Pack Thermal Management
- URL: http://arxiv.org/abs/2411.09915v2
- Date: Mon, 18 Nov 2024 02:27:04 GMT
- Title: Physics-informed Machine Learning for Battery Pack Thermal Management
- Authors: Zheng Liu, Yuan Jiang, Yumeng Li, Pingfeng Wang,
- Abstract summary: We develop a 21700 battery pack indirect liquid cooling system with cold plates on the top and bottom with thermal paste surrounding the battery cells.
Due to the high coolant flow rate, the cold plates can be considered as constant temperature boundaries, while battery cells are the heat sources.
The physics-informed convolutional neural network served as a surrogate model to estimate the temperature distribution of the battery pack.
- Score: 8.202484782960967
- License:
- Abstract: With the popularity of electric vehicles, the demand for lithium-ion batteries is increasing. Temperature significantly influences the performance and safety of batteries. Battery thermal management systems can effectively control the temperature of batteries; therefore, the performance and safety can be ensured. However, the development process of battery thermal management systems is time-consuming and costly due to the extensive training dataset needed by data-driven models requiring enormous computational costs for finite element analysis. Therefore, a new approach to constructing surrogate models is needed in the era of AI. Physics-informed machine learning enforces the physical laws in surrogate models, making it the perfect candidate for estimating battery pack temperature distribution. In this study, we first developed a 21700 battery pack indirect liquid cooling system with cold plates on the top and bottom with thermal paste surrounding the battery cells. Then, the simplified finite element model was built based on experiment results. Due to the high coolant flow rate, the cold plates can be considered as constant temperature boundaries, while battery cells are the heat sources. The physics-informed convolutional neural network served as a surrogate model to estimate the temperature distribution of the battery pack. The loss function was constructed considering the heat conduction equation based on the finite difference method. The physics-informed loss function helped the convergence of the training process with less data. As a result, the physics-informed convolutional neural network showed more than 15 percents improvement in accuracy compared to the data-driven method with the same training data.
Related papers
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Cycle Life Prediction for Lithium-ion Batteries: Machine Learning and More [0.0]
Batteries are dynamic systems with complicated nonlinear aging.
This tutorial begins with an overview of first-principles, machine learning, and hybrid battery models.
We highlight the challenges of machine learning models, motivating the incorporation of physics in hybrid modeling approaches.
arXiv Detail & Related papers (2024-04-05T12:05:20Z) - Autonomous Payload Thermal Control [55.2480439325792]
In small satellites there is less room for heat control equipment, scientific instruments, and electronic components.
An autonomous thermal control tool that uses deep reinforcement learning is proposed for learning the thermal control policy onboard.
The proposed framework is able to learn to control the payload processing power to maintain the temperature under operational ranges.
arXiv Detail & Related papers (2023-07-28T09:40:19Z) - LiFe-net: Data-driven Modelling of Time-dependent Temperatures and
Charging Statistics Of Tesla's LiFePo4 EV Battery [0.0]
Extreme temperatures in the battery packs can affect their longevity and power output.
It is difficult to acquire data measurements from within the battery cell.
We propose a data-driven surrogate model (LiFe-net) that uses readily accessible driving diagnostics for battery temperature estimation.
arXiv Detail & Related papers (2022-12-16T10:59:03Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
We introduce a novel Transformer-based deep learning architecture which is able to simultaneously infer the ageing state from a limited number of voltage/current samples.
Our experiments show that the trained model is effective for input current profiles of different complexities and is robust to a wide range of degradation levels.
arXiv Detail & Related papers (2022-06-01T15:31:06Z) - Battery Cloud with Advanced Algorithms [1.7205106391379026]
A Battery Cloud or cloud battery management system leverages the cloud computational power and data storage to improve battery safety, performance, and economy.
This work will present the Battery Cloud that collects measured battery data from electric vehicles and energy storage systems.
arXiv Detail & Related papers (2022-03-07T21:56:17Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
We find that low connectivity is a resource to build precise thermometers working at low temperatures.
We compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.
arXiv Detail & Related papers (2021-04-21T17:19:42Z) - Battery Model Calibration with Deep Reinforcement Learning [5.004835203025507]
We implement a Reinforcement Learning-based framework for reliably and efficiently inferring calibration parameters of battery models.
The framework enables real-time inference of the computational model parameters in order to compensate the reality-gap from the observations.
arXiv Detail & Related papers (2020-12-07T19:26:08Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.