Predicting ionic conductivity in solids from the machine-learned potential energy landscape
- URL: http://arxiv.org/abs/2411.06804v1
- Date: Mon, 11 Nov 2024 09:01:36 GMT
- Title: Predicting ionic conductivity in solids from the machine-learned potential energy landscape
- Authors: Artem Maevskiy, Alexandra Carvalho, Emil Sataev, Volha Turchyna, Keian Noori, Aleksandr Rodin, A. H. Castro Neto, Andrey Ustyuzhanin,
- Abstract summary: Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
- Score: 68.25662704255433
- License:
- Abstract: Discovering new superionic materials is essential for advancing solid-state batteries, which offer improved energy density and safety compared to the traditional lithium-ion batteries with liquid electrolytes. Conventional computational methods for identifying such materials are resource-intensive and not easily scalable. Recently, universal interatomic potential models have been developed using equivariant graph neural networks. These models are trained on extensive datasets of first-principles force and energy calculations. One can achieve significant computational advantages by leveraging them as the foundation for traditional methods of assessing the ionic conductivity, such as molecular dynamics or nudged elastic band techniques. However, the generalization error from model inference on diverse atomic structures arising in such calculations can compromise the reliability of the results. In this work, we propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential. Our method incorporates a set of heuristic structure descriptors that effectively employ the rich knowledge of the underlying model while requiring minimal generalization capabilities. Using our descriptors, we rank lithium-containing materials in the Materials Project database according to their expected ionic conductivity. Eight out of the ten highest-ranked materials are confirmed to be superionic at room temperature in first-principles calculations. Notably, our method achieves a speed-up factor of approximately 50 compared to molecular dynamics driven by a machine-learning potential, and is at least 3,000 times faster compared to first-principles molecular dynamics.
Related papers
- Constructing accurate machine-learned potentials and performing highly efficient atomistic simulations to predict structural and thermal properties [6.875235178607604]
We introduce a neuroevolution potential (NEP) trained on a dataset generated from ab initio molecular dynamics (AIMD) simulations.
We calculate the phonon density of states (DOS) and radial distribution function (RDF) using both machine learning potentials.
While the MTP potential offers slightly higher accuracy, the NEP achieves a remarkable 41-fold increase in computational speed.
arXiv Detail & Related papers (2024-11-16T23:16:59Z) - Self-Consistent Determination of Single-Impurity Anderson Model Using Hybrid Quantum-Classical Approach on a Spin Quantum Simulator [3.5919681412083038]
In this paper, we experimentally demonstrate a hybrid quantum-classical approach to correlated materials.
We address the most computationally demanding aspect of the calculation, namely the computation of the Green's function.
As the number of qubits with high control fidelity continues to grow, our experimental findings pave the way for solving even more complex models.
arXiv Detail & Related papers (2024-10-10T10:49:40Z) - Electronic-structure properties from atom-centered predictions of the
electron density [0.0]
electron density of a molecule or material has recently received major attention as a target quantity of machine-learning models.
We propose a gradient-based approach to minimize the loss function of the regression problem in an optimized and highly sparse feature space.
We show that starting from the predicted density a single Kohn-Sham diagonalization step can be performed to access total energy components that carry an error of just 0.1 meV/atom.
arXiv Detail & Related papers (2022-06-28T15:35:55Z) - Symbolic Regression in Materials Science: Discovering Interatomic
Potentials from Data [1.7149364927872015]
Machine learning can offset the high computational costs of ab initio atomic potentials.
symbolic regression is a powerful "white-box" approach for discovering functional forms of interatomic potentials.
Genetic programming-based approach for modeling atomic potentials is presented.
arXiv Detail & Related papers (2022-06-13T19:05:21Z) - Machine Learning-Aided Discovery of Superionic Solid-State Electrolyte
for Li-Ion Batteries [1.787419386215488]
Li-Ion Solid-State Electrolytes (Li-SSEs) are a promising solution that resolves the critical issues of conventional Li-Ion Batteries (LIBs)
A machine-learning surrogate model for discovering superionic Li-SSEs among 20,237 Li-containing materials is developed.
arXiv Detail & Related papers (2022-02-14T14:33:56Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
We use current quantum hardware and error mitigation protocols to calculate response functions for a highly simplified nuclear model.
In this work we use current quantum hardware and error mitigation protocols to calculate response functions for a modified Fermi-Hubbard model in two dimensions with three distinguishable nucleons on four lattice sites.
arXiv Detail & Related papers (2021-11-04T16:25:33Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features [42.96944345045462]
textscOrbNet is shown to outperform existing methods in terms of learning efficiency and transferability.
For applications to datasets of drug-like molecules, textscOrbNet predicts energies within chemical accuracy of DFT at a computational cost that is thousand-fold or more reduced.
arXiv Detail & Related papers (2020-07-15T22:38:41Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.