TEESlice: Protecting Sensitive Neural Network Models in Trusted Execution Environments When Attackers have Pre-Trained Models
- URL: http://arxiv.org/abs/2411.09945v1
- Date: Fri, 15 Nov 2024 04:52:11 GMT
- Title: TEESlice: Protecting Sensitive Neural Network Models in Trusted Execution Environments When Attackers have Pre-Trained Models
- Authors: Ding Li, Ziqi Zhang, Mengyu Yao, Yifeng Cai, Yao Guo, Xiangqun Chen,
- Abstract summary: TSDP is a method that protects privacy-sensitive weights within TEEs and offloads insensitive weights to GPUs.
We introduce a novel partition before training strategy, which effectively separates privacy-sensitive weights from other components of the model.
Our evaluation demonstrates that our approach can offer full model protection with a computational cost reduced by a factor of 10.
- Score: 12.253529209143197
- License:
- Abstract: Trusted Execution Environments (TEE) are used to safeguard on-device models. However, directly employing TEEs to secure the entire DNN model is challenging due to the limited computational speed. Utilizing GPU can accelerate DNN's computation speed but commercial widely-available GPUs usually lack security protection. To this end, scholars introduce TSDP, a method that protects privacy-sensitive weights within TEEs and offloads insensitive weights to GPUs. Nevertheless, current methods do not consider the presence of a knowledgeable adversary who can access abundant publicly available pre-trained models and datasets. This paper investigates the security of existing methods against such a knowledgeable adversary and reveals their inability to fulfill their security promises. Consequently, we introduce a novel partition before training strategy, which effectively separates privacy-sensitive weights from other components of the model. Our evaluation demonstrates that our approach can offer full model protection with a computational cost reduced by a factor of 10. In addition to traditional CNN models, we also demonstrate the scalability to large language models. Our approach can compress the private functionalities of the large language model to lightweight slices and achieve the same level of protection as the shielding-whole-model baseline.
Related papers
- A Novel Access Control and Privacy-Enhancing Approach for Models in Edge Computing [0.26107298043931193]
We propose a novel model access control method tailored for edge computing environments.
This method leverages image style as a licensing mechanism, embedding style recognition into the model's operational framework.
By restricting the input data to the edge model, this approach not only prevents attackers from gaining unauthorized access to the model but also enhances the privacy of data on terminal devices.
arXiv Detail & Related papers (2024-11-06T11:37:30Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Privacy preserving layer partitioning for Deep Neural Network models [0.21470800327528838]
Trusted Execution Environments (TEEs) can introduce significant performance overhead due to additional layers of encryption, decryption, security and integrity checks.
We introduce layer partitioning technique and offloading computations to GPU.
We conduct experiments to demonstrate the effectiveness of our approach in protecting against input reconstruction attacks developed using trained conditional Generative Adversarial Network(c-GAN)
arXiv Detail & Related papers (2024-04-11T02:39:48Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
Existing model stealing defenses add deceptive perturbations to the victim's posterior probabilities to mislead the attackers.
This paper proposes Isolation and Induction (InI), a novel and effective training framework for model stealing defenses.
In contrast to adding perturbations over model predictions that harm the benign accuracy, we train models to produce uninformative outputs against stealing queries.
arXiv Detail & Related papers (2023-08-02T05:54:01Z) - Publishing Efficient On-device Models Increases Adversarial
Vulnerability [58.6975494957865]
In this paper, we study the security considerations of publishing on-device variants of large-scale models.
We first show that an adversary can exploit on-device models to make attacking the large models easier.
We then show that the vulnerability increases as the similarity between a full-scale and its efficient model increase.
arXiv Detail & Related papers (2022-12-28T05:05:58Z) - CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated
Learning [77.27443885999404]
Federated Learning (FL) is a setting for training machine learning models in distributed environments.
We propose a novel method, CANIFE, that uses carefully crafted samples by a strong adversary to evaluate the empirical privacy of a training round.
arXiv Detail & Related papers (2022-10-06T13:30:16Z) - Shielding Federated Learning Systems against Inference Attacks with ARM
TrustZone [0.0]
Federated Learning (FL) opens new perspectives for training machine learning models while keeping personal data on the users premises.
The long list of inference attacks that leak private data from gradients, published in the recent years, have emphasized the need of devising effective protection mechanisms.
We present GradSec, a solution that allows protecting in a TEE only sensitive layers of a machine learning model.
arXiv Detail & Related papers (2022-08-11T15:53:07Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution
Environments [37.84943219784536]
We present DarkneTZ, a framework that uses an edge device's Trusted Execution Environment (TEE) to limit the attack surface against Deep Neural Networks (DNNs)
We evaluate the performance of DarkneTZ, including CPU execution time, memory usage, and accurate power consumption.
Our results show that even if a single layer is hidden, we can provide reliable model privacy and defend against state of the art MIAs, with only 3% performance overhead.
arXiv Detail & Related papers (2020-04-12T21:42:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.