Towards Utilising a Range of Neural Activations for Comprehending Representational Associations
- URL: http://arxiv.org/abs/2411.10019v1
- Date: Fri, 15 Nov 2024 07:54:14 GMT
- Title: Towards Utilising a Range of Neural Activations for Comprehending Representational Associations
- Authors: Laura O'Mahony, Nikola S. Nikolov, David JP O'Sullivan,
- Abstract summary: We show that an approach to label intermediate representations in deep neural networks fails to capture valuable information about their behaviour.
We hypothesise that non-extremal level activations contain complex information worth investigating.
We use our findings to develop a method to curate data from mid-range logit samples for retraining to mitigate spurious correlations.
- Score: 0.6554326244334868
- License:
- Abstract: Recent efforts to understand intermediate representations in deep neural networks have commonly attempted to label individual neurons and combinations of neurons that make up linear directions in the latent space by examining extremal neuron activations and the highest direction projections. In this paper, we show that this approach, although yielding a good approximation for many purposes, fails to capture valuable information about the behaviour of a representation. Neural network activations are generally dense, and so a more complex, but realistic scenario is that linear directions encode information at various levels of stimulation. We hypothesise that non-extremal level activations contain complex information worth investigating, such as statistical associations, and thus may be used to locate confounding human interpretable concepts. We explore the value of studying a range of neuron activations by taking the case of mid-level output neuron activations and demonstrate on a synthetic dataset how they can inform us about aspects of representations in the penultimate layer not evident through analysing maximal activations alone. We use our findings to develop a method to curate data from mid-range logit samples for retraining to mitigate spurious correlations, or confounding concepts in the penultimate layer, on real benchmark datasets. The success of our method exemplifies the utility of inspecting non-maximal activations to extract complex relationships learned by models.
Related papers
- DISCOVER: Making Vision Networks Interpretable via Competition and
Dissection [11.028520416752325]
This work contributes to post-hoc interpretability, and specifically Network Dissection.
Our goal is to present a framework that makes it easier to discover the individual functionality of each neuron in a network trained on a vision task.
arXiv Detail & Related papers (2023-10-07T21:57:23Z) - Decorrelating neurons using persistence [29.25969187808722]
We present two regularisation terms computed from the weights of a minimum spanning tree of a clique.
We demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms.
We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms.
arXiv Detail & Related papers (2023-08-09T11:09:14Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
We show that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples.
arXiv Detail & Related papers (2022-10-17T20:15:24Z) - Neural Activation Patterns (NAPs): Visual Explainability of Learned
Concepts [8.562628320010035]
We present a method that takes into account the entire activation distribution.
By extracting similar activation profiles within the high-dimensional activation space of a neural network layer, we find groups of inputs that are treated similarly.
These input groups represent neural activation patterns (NAPs) and can be used to visualize and interpret learned layer concepts.
arXiv Detail & Related papers (2022-06-20T09:05:57Z) - Learnable latent embeddings for joint behavioral and neural analysis [3.6062449190184136]
We show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, and rapid, high-accuracy decoding of natural movies from visual cortex.
We validate its accuracy and demonstrate its utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species.
arXiv Detail & Related papers (2022-04-01T19:19:33Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
We use a variant of deep generative models called - CycleGAN, to learn the unknown mapping between pre- and post-learning neural activities.
We develop an end-to-end pipeline to preprocess, train and evaluate calcium fluorescence signals, and a procedure to interpret the resulting deep learning models.
arXiv Detail & Related papers (2021-11-25T13:24:19Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - Compositional Explanations of Neurons [52.71742655312625]
We describe a procedure for explaining neurons in deep representations by identifying compositional logical concepts.
We use this procedure to answer several questions on interpretability in models for vision and natural language processing.
arXiv Detail & Related papers (2020-06-24T20:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.