論文の概要: Step-wise Distribution Alignment Guided Style Prompt Tuning for Source-free Cross-domain Few-shot Learning
- arxiv url: http://arxiv.org/abs/2411.10070v1
- Date: Fri, 15 Nov 2024 09:34:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:17.100655
- Title: Step-wise Distribution Alignment Guided Style Prompt Tuning for Source-free Cross-domain Few-shot Learning
- Title(参考訳): ソースレスクロスドメインFew-shot学習のためのステップワイド配向ガイド型プロンプトチューニング
- Authors: Huali Xu, Yongxiang Liu, Li Liu, Shuaifeng Zhi, Shuzhou Sun, Tianpeng Liu, MingMing Cheng,
- Abstract要約: クロスドメインの少数ショット学習手法は、アクセス不能なソースデータとトレーニング戦略により、大規模事前学習モデルの課題に直面している。
本稿では,ステップワイド配向ガイド型プロンプトチューニング(StepSPT)を紹介する。
StepSPTは予測分布最適化を通じて暗黙的にドメインギャップを狭める。
- 参考スコア(独自算出の注目度): 53.60934432718044
- License:
- Abstract: Existing cross-domain few-shot learning (CDFSL) methods, which develop source-domain training strategies to enhance model transferability, face challenges with large-scale pre-trained models (LMs) due to inaccessible source data and training strategies. Moreover, fine-tuning LMs for CDFSL demands substantial computational resources, limiting practicality. This paper addresses the source-free CDFSL (SF-CDFSL) problem, tackling few-shot learning (FSL) in the target domain using only pre-trained models and a few target samples without source data or strategies. To overcome the challenge of inaccessible source data, this paper introduces Step-wise Distribution Alignment Guided Style Prompt Tuning (StepSPT), which implicitly narrows domain gaps through prediction distribution optimization. StepSPT proposes a style prompt to align target samples with the desired distribution and adopts a dual-phase optimization process. In the external process, a step-wise distribution alignment strategy factorizes prediction distribution optimization into a multi-step alignment problem to tune the style prompt. In the internal process, the classifier is updated using standard cross-entropy loss. Evaluations on five datasets demonstrate that StepSPT outperforms existing prompt tuning-based methods and SOTAs. Ablation studies further verify its effectiveness. Code will be made publicly available at \url{https://github.com/xuhuali-mxj/StepSPT}.
- Abstract(参考訳): モデル転送可能性を高めるためのソースドメイントレーニング戦略を開発する既存のクロスドメイン・ショットラーニング(CDFSL)手法は、アクセス不能なソースデータとトレーニング戦略により、大規模事前訓練モデル(LM)による課題に直面している。
さらに、CDFSL用の微調整LMは、実用性を制限し、かなりの計算資源を必要とする。
本稿では,ソースフリーCDFSL(SF-CDFSL)問題に対処し,事前学習されたモデルと,ソースデータやストラテジーを使わずにターゲットサンプルのみを用いて,FSL(Fall-shot Learning)に対処する。
本稿では、アクセス不能なソースデータの課題を解決するために、予測分布最適化によりドメインギャップを暗黙的に狭めるステップワイド配向ガイド型プロンプトチューニング(StepSPT)を提案する。
StepSPTは、ターゲットサンプルを所望の分布に整合させるスタイルプロンプトを提案し、二重位相最適化プロセスを採用する。
外部プロセスにおいて、ステップワイズ分布アライメント戦略は、予測分布最適化を多段階アライメント問題に分解し、スタイルプロンプトをチューニングする。
内部プロセスでは、標準のクロスエントロピー損失を用いて分類器を更新する。
5つのデータセットの評価は、StepSPTが既存のプロンプトチューニング方式とSOTAよりも優れていることを示している。
アブレーション研究は、その効果をさらに検証する。
コードは \url{https://github.com/xuhuali-mxj/StepSPT} で公開されている。
関連論文リスト
- FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models [10.969811500333755]
本稿では,FIND(Fincent-tuning Initial Noise Distribution)フレームワークのポリシー最適化について紹介する。
提案手法はSOTA法よりも10倍高速である。
論文 参考訳(メタデータ) (2024-07-28T10:07:55Z) - SAIL: Self-Improving Efficient Online Alignment of Large Language Models [56.59644677997827]
人間のフィードバックからの強化学習は、大きな言語モデルを人間の好みに合わせるための重要な方法である。
近年の文献では、オンラインRLHF法の設計に焦点が当てられているが、統一された概念的定式化はいまだに欠けている。
提案手法は,計算オーバーヘッドを最小限に抑えたオープンソースデータセットのアライメント性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-06-21T18:05:35Z) - DiffClass: Diffusion-Based Class Incremental Learning [30.514281721324853]
クラスインクリメンタルラーニング(CIL)は破滅的な忘れが原因で困難である。
最近の例のないCIL手法は、過去のタスクデータを合成することによって破滅的な忘れを軽減しようとする。
そこで本研究では,これらの問題を克服するために,新しい非定型CIL法を提案する。
論文 参考訳(メタデータ) (2024-03-08T03:34:18Z) - Enhancing Information Maximization with Distance-Aware Contrastive
Learning for Source-Free Cross-Domain Few-Shot Learning [55.715623885418815]
クロスドメインのFew-Shot Learningメソッドは、トレーニング前のフェーズでモデルをトレーニングするために、ソースドメインデータにアクセスする必要がある。
データプライバシやデータ送信やトレーニングコストの削減に対する懸念が高まっているため,ソースデータにアクセスせずにCDFSLソリューションを開発する必要がある。
本稿では,これらの課題に対処するための距離対応コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-03-04T12:10:24Z) - Adaptive Weighted Co-Learning for Cross-Domain Few-Shot Learning [23.615250207134004]
クロスドメイン少ショット学習(CDFSL)は、非常に困難な適応問題を引き起こす。
適応重み付き共学習法(AWCoL)を提案し,CDFSL問題に対処する。
複数のベンチマークデータセットに対して総合的な実験を行い,提案手法が最先端のCDFSL性能を実現することを示す実証実験を行った。
論文 参考訳(メタデータ) (2023-12-06T22:09:52Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
Informative Data Mining (IDM) と呼ばれる新しいフレームワークを提案し、セマンティックセグメンテーションのための効率的なワンショットドメイン適応を実現する。
IDMは、最も情報性の高いサンプルを特定するために不確実性に基づく選択基準を提供し、迅速に適応し、冗長なトレーニングを減らす。
提案手法は,GTA5/SYNTHIAからCityscapesへの適応タスクにおいて,既存の手法より優れ,56.7%/55.4%の最先端のワンショット性能を実現している。
論文 参考訳(メタデータ) (2023-09-25T15:56:01Z) - Phasic Content Fusing Diffusion Model with Directional Distribution
Consistency for Few-Shot Model Adaption [73.98706049140098]
本稿では,方向分布の整合性を損なう少数ショット拡散モデルを用いた新しいファシックコンテンツを提案する。
具体的には、ファシックコンテンツ融合を用いたファシックトレーニング戦略を設計し、tが大きければ、モデルがコンテンツやスタイル情報を学ぶのに役立てる。
最後に、ドメイン適応時の構造整合性を高めるクロスドメイン構造ガイダンス戦略を提案する。
論文 参考訳(メタデータ) (2023-09-07T14:14:11Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Adaptive Semantic Consistency for Cross-domain Few-shot Classification [27.176106714652327]
クロスドメイン・ショット分類(CD-FSC)は、いくつかのサンプルを用いて新規なターゲットクラスを特定することを目的としている。
本稿では,ドメイン間の堅牢性を向上する,シンプルなプラグアンドプレイ適応セマンティック一貫性フレームワークを提案する。
提案したASCは、ソースドメインの知識を明示的に伝達することで、モデルがターゲットドメインに過度に適合しないようにする。
論文 参考訳(メタデータ) (2023-08-01T15:37:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。