Evidential Federated Learning for Skin Lesion Image Classification
- URL: http://arxiv.org/abs/2411.10071v1
- Date: Fri, 15 Nov 2024 09:34:28 GMT
- Title: Evidential Federated Learning for Skin Lesion Image Classification
- Authors: Rutger Hendrix, Federica Proietto Salanitri, Concetto Spampinato, Simone Palazzo, Ulas Bagci,
- Abstract summary: FedEvPrompt is a federated learning approach that integrates principles of evidential deep learning, prompt tuning, and knowledge distillation.
It is optimized within a round-based learning paradigm, where each round involves training local models followed by attention maps sharing with all federation clients.
In conclusion, FedEvPrompt offers a promising approach for federated learning, effectively addressing challenges such as data heterogeneity, imbalance, privacy preservation, and knowledge sharing.
- Score: 9.112380151690862
- License:
- Abstract: We introduce FedEvPrompt, a federated learning approach that integrates principles of evidential deep learning, prompt tuning, and knowledge distillation for distributed skin lesion classification. FedEvPrompt leverages two sets of prompts: b-prompts (for low-level basic visual knowledge) and t-prompts (for task-specific knowledge) prepended to frozen pre-trained Vision Transformer (ViT) models trained in an evidential learning framework to maximize class evidences. Crucially, knowledge sharing across federation clients is achieved only through knowledge distillation on attention maps generated by the local ViT models, ensuring enhanced privacy preservation compared to traditional parameter or synthetic image sharing methodologies. FedEvPrompt is optimized within a round-based learning paradigm, where each round involves training local models followed by attention maps sharing with all federation clients. Experimental validation conducted in a real distributed setting, on the ISIC2019 dataset, demonstrates the superior performance of FedEvPrompt against baseline federated learning algorithms and knowledge distillation methods, without sharing model parameters. In conclusion, FedEvPrompt offers a promising approach for federated learning, effectively addressing challenges such as data heterogeneity, imbalance, privacy preservation, and knowledge sharing.
Related papers
- High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Cross-Training with Multi-View Knowledge Fusion for Heterogenous Federated Learning [13.796783869133531]
This paper presents a novel approach that enhances federated learning through a cross-training scheme incorporating multi-view information.
Specifically, the proposed method, termed FedCT, includes three main modules, where the consistency-aware knowledge broadcasting module aims to optimize model assignment strategies.
The multi-view knowledge-guided representation learning module leverages fused knowledge from both global and local views to enhance the preservation of local knowledge before and after model exchange.
The mixup-based feature augmentation module aggregates rich information to further increase the diversity of feature spaces, which enables the model to better discriminate complex samples.
arXiv Detail & Related papers (2024-05-30T13:27:30Z) - KnFu: Effective Knowledge Fusion [5.305607095162403]
Federated Learning (FL) has emerged as a prominent alternative to the traditional centralized learning approach.
The paper proposes Effective Knowledge Fusion (KnFu) algorithm that evaluates knowledge of local models to only fuse semantic neighbors' effective knowledge for each client.
A key conclusion of the work is that in scenarios with large and highly heterogeneous local datasets, local training could be preferable to knowledge fusion-based solutions.
arXiv Detail & Related papers (2024-03-18T15:49:48Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)
To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.
When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
Federated learning is vulnerable to white-box attacks and struggles to adapt to heterogeneous clients.
This paper proposes a selective knowledge sharing mechanism for FD, termed Selective-FD.
arXiv Detail & Related papers (2023-04-04T12:04:19Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Heterogeneous Federated Knowledge Graph Embedding Learning and
Unlearning [14.063276595895049]
Federated Learning (FL) is a paradigm to train a global machine learning model across distributed clients without sharing raw data.
We propose FedLU, a novel FL framework for heterogeneous KG embedding learning and unlearning.
We show that FedLU achieves superior results in both link prediction and knowledge forgetting.
arXiv Detail & Related papers (2023-02-04T02:44:48Z) - When Do Curricula Work in Federated Learning? [56.88941905240137]
We find that curriculum learning largely alleviates non-IIDness.
The more disparate the data distributions across clients the more they benefit from learning.
We propose a novel client selection technique that benefits from the real-world disparity in the clients.
arXiv Detail & Related papers (2022-12-24T11:02:35Z) - Feature Correlation-guided Knowledge Transfer for Federated
Self-supervised Learning [19.505644178449046]
We propose a novel and general method named Federated Self-supervised Learning with Feature-correlation based Aggregation (FedFoA)
Our insight is to utilize feature correlation to align the feature mappings and calibrate the local model updates across clients during their local training process.
We prove that FedFoA is a model-agnostic training framework and can be easily compatible with state-of-the-art unsupervised FL methods.
arXiv Detail & Related papers (2022-11-14T13:59:50Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
We propose a self-paced knowledge distillation framework, termed Learning From Multiple Experts (LFME)
We refer to these models as 'Experts', and the proposed LFME framework aggregates the knowledge from multiple 'Experts' to learn a unified student model.
We conduct extensive experiments and demonstrate that our method is able to achieve superior performances compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-06T12:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.