Multi-Task Adversarial Variational Autoencoder for Estimating Biological Brain Age with Multimodal Neuroimaging
- URL: http://arxiv.org/abs/2411.10100v1
- Date: Fri, 15 Nov 2024 10:50:36 GMT
- Title: Multi-Task Adversarial Variational Autoencoder for Estimating Biological Brain Age with Multimodal Neuroimaging
- Authors: Muhammad Usman, Azka Rehman, Abdullah Shahid, Abd Ur Rehman, Sung-Min Gho, Aleum Lee, Tariq M. Khan, Imran Razzak,
- Abstract summary: We present the Multitask Adversarial Variational Autoencoder, a custom deep learning framework designed to improve brain age predictions.
The model separates latent variables into generic and unique codes, isolating shared and modality-specific features.
By integrating multitask learning with sex classification as an additional task, the model captures sex-specific aging patterns.
- Score: 8.610253537046692
- License:
- Abstract: Despite advances in deep learning for estimating brain age from structural MRI data, incorporating functional MRI data is challenging due to its complex structure and the noisy nature of functional connectivity measurements. To address this, we present the Multitask Adversarial Variational Autoencoder, a custom deep learning framework designed to improve brain age predictions through multimodal MRI data integration. This model separates latent variables into generic and unique codes, isolating shared and modality-specific features. By integrating multitask learning with sex classification as an additional task, the model captures sex-specific aging patterns. Evaluated on the OpenBHB dataset, a large multisite brain MRI collection, the model achieves a mean absolute error of 2.77 years, outperforming traditional methods. This success positions M-AVAE as a powerful tool for metaverse-based healthcare applications in brain age estimation.
Related papers
- Biological Brain Age Estimation using Sex-Aware Adversarial Variational Autoencoder with Multimodal Neuroimages [8.610253537046692]
We propose a novel framework for brain age estimation utilizing a sex-aware adversarial variational autoencoder (SA-AVAE)
We decompose the latent space into modality-specific codes and shared codes to represent complementary and common information across modalities.
We incorporate sex information into the learned latent code, enabling the model to capture sex-specific aging patterns for brain age estimation.
arXiv Detail & Related papers (2024-12-07T12:10:29Z) - Generative forecasting of brain activity enhances Alzheimer's classification and interpretation [16.09844316281377]
Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive method to monitor neural activity.
Deep learning has shown promise in capturing these representations.
In this study, we focus on time series forecasting of independent component networks derived from rs-fMRI as a form of data augmentation.
arXiv Detail & Related papers (2024-10-30T23:51:31Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - SynthBA: Reliable Brain Age Estimation Across Multiple MRI Sequences and Resolutions [4.543154658281538]
The gap between brain age and chronological age, referred to as brain PAD (Predicted Age Difference), has been utilized to investigate neurodegenerative conditions.
Brain age can be predicted using MRIs and machine learning techniques.
We introduce Synthetic Brain Age ( SynthBA), a robust deep-learning model designed for predicting brain age.
arXiv Detail & Related papers (2024-06-01T08:58:40Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Modality-Aware and Shift Mixer for Multi-modal Brain Tumor Segmentation [12.094890186803958]
We present a novel Modality Aware and Shift Mixer that integrates intra-modality and inter-modality dependencies of multi-modal images for effective and robust brain tumor segmentation.
Specifically, we introduce a Modality-Aware module according to neuroimaging studies for modeling the specific modality pair relationships at low levels, and a Modality-Shift module with specific mosaic patterns is developed to explore the complex relationships across modalities at high levels via the self-attention.
arXiv Detail & Related papers (2024-03-04T14:21:51Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - DIGEST: Deeply supervIsed knowledGE tranSfer neTwork learning for brain
tumor segmentation with incomplete multi-modal MRI scans [16.93394669748461]
Brain tumor segmentation based on multi-modal magnetic resonance imaging (MRI) plays a pivotal role in assisting brain cancer diagnosis, treatment, and postoperative evaluations.
Despite the achieved inspiring performance by existing automatic segmentation methods, multi-modal MRI data are still unavailable in real-world clinical applications.
We propose a Deeply supervIsed knowledGE tranSfer neTwork (DIGEST), which achieves accurate brain tumor segmentation under different modality-missing scenarios.
arXiv Detail & Related papers (2022-11-15T09:01:14Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.