Learning Generalizable 3D Manipulation With 10 Demonstrations
- URL: http://arxiv.org/abs/2411.10203v1
- Date: Fri, 15 Nov 2024 14:01:02 GMT
- Title: Learning Generalizable 3D Manipulation With 10 Demonstrations
- Authors: Yu Ren, Yang Cong, Ronghan Chen, Jiahao Long,
- Abstract summary: We present a novel framework that learns manipulation skills from as few as 10 demonstrations.
We validate our framework through extensive experiments on both simulation benchmarks and real-world robotic systems.
This work shows significant potential for advancing efficient, generalizable manipulation skill learning in real-world applications.
- Score: 16.502781729164973
- License:
- Abstract: Learning robust and generalizable manipulation skills from demonstrations remains a key challenge in robotics, with broad applications in industrial automation and service robotics. While recent imitation learning methods have achieved impressive results, they often require large amounts of demonstration data and struggle to generalize across different spatial variants. In this work, we present a novel framework that learns manipulation skills from as few as 10 demonstrations, yet still generalizes to spatial variants such as different initial object positions and camera viewpoints. Our framework consists of two key modules: Semantic Guided Perception (SGP), which constructs task-focused, spatially aware 3D point cloud representations from RGB-D inputs; and Spatial Generalized Decision (SGD), an efficient diffusion-based decision-making module that generates actions via denoising. To effectively learn generalization ability from limited data, we introduce a critical spatially equivariant training strategy that captures the spatial knowledge embedded in expert demonstrations. We validate our framework through extensive experiments on both simulation benchmarks and real-world robotic systems. Our method demonstrates a 60 percent improvement in success rates over state-of-the-art approaches on a series of challenging tasks, even with substantial variations in object poses and camera viewpoints. This work shows significant potential for advancing efficient, generalizable manipulation skill learning in real-world applications.
Related papers
- Spatially Visual Perception for End-to-End Robotic Learning [33.490603706207075]
We introduce a video-based spatial perception framework that leverages 3D spatial representations to address environmental variability.
Our approach integrates a novel image augmentation technique, AugBlender, with a state-of-the-art monocular depth estimation model trained on internet-scale data.
arXiv Detail & Related papers (2024-11-26T14:23:42Z) - SPA: 3D Spatial-Awareness Enables Effective Embodied Representation [20.123243422061048]
We introduce SPA, a novel representation learning framework that emphasizes the importance of 3D spatial awareness in embodied AI.
We present the most comprehensive evaluation of embodied representation learning to date, covering 268 tasks across 8 simulators.
arXiv Detail & Related papers (2024-10-10T17:59:51Z) - EquiBot: SIM(3)-Equivariant Diffusion Policy for Generalizable and Data Efficient Learning [36.0274770291531]
We propose Equibot, a robust, data-efficient, and generalizable approach for robot manipulation task learning.
Our approach combines SIM(3)-equivariant neural network architectures with diffusion models.
We show that our method can easily generalize to novel objects and scenes after learning from just 5 minutes of human demonstrations in each task.
arXiv Detail & Related papers (2024-07-01T17:09:43Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - AdaDemo: Data-Efficient Demonstration Expansion for Generalist Robotic Agent [75.91274222142079]
In this study, we aim to scale up demonstrations in a data-efficient way to facilitate the learning of generalist robotic agents.
AdaDemo is a framework designed to improve multi-task policy learning by actively and continually expanding the demonstration dataset.
arXiv Detail & Related papers (2024-04-11T01:59:29Z) - Point Cloud Matters: Rethinking the Impact of Different Observation Spaces on Robot Learning [58.69297999175239]
In robot learning, the observation space is crucial due to the distinct characteristics of different modalities.
In this study, we explore the influence of various observation spaces on robot learning, focusing on three predominant modalities: RGB, RGB-D, and point cloud.
arXiv Detail & Related papers (2024-02-04T14:18:45Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation [8.939008609565368]
In this paper, we demonstrate the efficacy of learning image keypoints via the Dense Correspondence pretext task for downstream policy learning.
We evaluate our approach on diverse robot manipulation tasks, compare it to other visual representation learning approaches, and demonstrate its flexibility and effectiveness for sample-efficient policy learning.
arXiv Detail & Related papers (2022-05-17T13:15:07Z) - Practical Imitation Learning in the Real World via Task Consistency Loss [18.827979446629296]
This paper introduces a self-supervised loss that encourages sim and real alignment both at the feature and action-prediction levels.
We achieve 80% success across ten seen and unseen scenes using only 16.2 hours of teleoperated demonstrations in sim and real.
arXiv Detail & Related papers (2022-02-03T21:43:06Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.