An Empirical Study on LLM-based Agents for Automated Bug Fixing
- URL: http://arxiv.org/abs/2411.10213v1
- Date: Fri, 15 Nov 2024 14:19:15 GMT
- Title: An Empirical Study on LLM-based Agents for Automated Bug Fixing
- Authors: Xiangxin Meng, Zexiong Ma, Pengfei Gao, Chao Peng,
- Abstract summary: Large language models (LLMs) and LLM-based Agents have been applied to fix bugs automatically.
We examine seven proprietary and open-source systems on the SWE-bench Lite benchmark for automated bug fixing.
- Score: 2.433168823911037
- License:
- Abstract: Large language models (LLMs) and LLM-based Agents have been applied to fix bugs automatically, demonstrating the capability in addressing software defects by engaging in development environment interaction, iterative validation and code modification. However, systematic analysis of these agent and non-agent systems remain limited, particularly regarding performance variations among top-performing ones. In this paper, we examine seven proprietary and open-source systems on the SWE-bench Lite benchmark for automated bug fixing. We first assess each system's overall performance, noting instances solvable by all or none of these sytems, and explore why some instances are uniquely solved by specific system types. We also compare fault localization accuracy at file and line levels and evaluate bug reproduction capabilities, identifying instances solvable only through dynamic reproduction. Through analysis, we concluded that further optimization is needed in both the LLM itself and the design of Agentic flow to improve the effectiveness of the Agent in bug fixing.
Related papers
- REDO: Execution-Free Runtime Error Detection for COding Agents [3.9903610503301072]
Execution-free Error Detection for COding Agents (REDO) is a method that integrates runtime errors with static analysis tools.
We demonstrate that REDO outperforms current state-of-the-art methods by achieving a 11.0% higher accuracy and a 9.1% higher weighted F1 score.
arXiv Detail & Related papers (2024-10-10T18:06:29Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel Agent is a self-evolving framework inspired by the G"odel machine.
G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
arXiv Detail & Related papers (2024-10-06T10:49:40Z) - MarsCode Agent: AI-native Automated Bug Fixing [7.909344108948294]
We introduce MarsCode Agent, a novel framework that leverages large language models to automatically identify and repair bugs in software code.
Our approach follows a systematic process of planning, bug reproduction, fault localization, candidate patch generation, and validation to ensure high-quality bug fixes.
Our results show that MarsCode Agent achieves a high success rate in bug fixing compared to most of the existing automated approaches.
arXiv Detail & Related papers (2024-09-02T02:24:38Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - A Unified Debugging Approach via LLM-Based Multi-Agent Synergy [39.11825182386288]
FixAgent is an end-to-end framework for unified debug through multi-agent synergy.
It significantly outperforms state-of-the-art repair methods, fixing 1.25$times$ to 2.56$times$ bugs on the repo-level benchmark, Defects4J.
arXiv Detail & Related papers (2024-04-26T04:55:35Z) - A Deep Dive into Large Language Models for Automated Bug Localization and Repair [12.756202755547024]
Large language models (LLMs) have shown impressive effectiveness in various software engineering tasks, including automated program repair (APR)
In this study, we take a deep dive into automated bug fixing utilizing LLMs.
This methodological separation of bug localization and fixing using different LLMs enables effective integration of diverse contextual information.
Toggle achieves the new state-of-the-art (SOTA) performance on the CodeXGLUE code refinement benchmark.
arXiv Detail & Related papers (2024-04-17T17:48:18Z) - AgentFL: Scaling LLM-based Fault Localization to Project-Level Context [11.147750199280813]
This paper presents AgentFL, a multi-agent system based on ChatGPT for automated fault localization.
By simulating the behavior of a human developer, AgentFL models the FL task as a three-step process, which involves comprehension, navigation, and confirmation.
The evaluation on the widely used Defects4J-V1.2.0 benchmark shows that AgentFL can localize 157 out of 395 bugs within Top-1.
arXiv Detail & Related papers (2024-03-25T01:58:19Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgent is a model-agnostic framework designed to automate scientific data visualization tasks.
MatPlotBench is a high-quality benchmark consisting of 100 human-verified test cases.
arXiv Detail & Related papers (2024-02-18T04:28:28Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.