論文の概要: P$^2$ Law: Scaling Law for Post-Training After Model Pruning
- arxiv url: http://arxiv.org/abs/2411.10272v2
- Date: Mon, 16 Dec 2024 12:00:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:53:14.672299
- Title: P$^2$ Law: Scaling Law for Post-Training After Model Pruning
- Title(参考訳): P$^2$法:モデルプランニング後のトレーニング後のスケーリング法則
- Authors: Xiaodong Chen, Yuxuan Hu, Xiaokang Zhang, Yanling Wang, Cuiping Li, Hong Chen, Jing Zhang,
- Abstract要約: プルーニングは、大規模言語モデル(LLM)のハードウェア要件を減らすために広く採用されている技術である。
プルーニング後のモデル性能を回復するため、結果として生じる性能劣化を軽減するために後訓練が一般的である。
学習後コストとモデル性能のバランスをとるためには,学習後データの最適量を探索する必要がある。
- 参考スコア(独自算出の注目度): 25.07013858614455
- License:
- Abstract: Pruning has become a widely adopted technique for reducing the hardware requirements of large language models (LLMs). To recover model performance after pruning, post-training is commonly employed to mitigate the resulting performance degradation. While post-training benefits from larger datasets, once the dataset size is already substantial, increasing the training data provides only limited performance gains. To balance post-training cost and model performance, it is necessary to explore the optimal amount of post-training data.Through extensive experiments on the Llama-3 and Qwen-2.5 series models, pruned using various common pruning methods, we uncover the scaling \textbf{Law} for \textbf{P}ost-training after model \textbf{P}runing, referred to as the P$^2$ Law.This law identifies four key factors for predicting the pruned model's post-training loss: the model size before pruning, the number of post-training tokens, the pruning rate, and the model's loss before pruning. Moreover, P$^2$ Law can generalize to larger dataset sizes, larger model sizes, and higher pruning rates, offering valuable insights for the post-training of pruned LLMs.
- Abstract(参考訳): プルーニングは、大規模言語モデル(LLM)のハードウェア要件を小さくする技術として広く採用されている。
プルーニング後のモデル性能を回復するため、結果として生じる性能劣化を軽減するために後訓練が一般的である。
トレーニング後のメリットは大きなデータセットにあるが、データセットのサイズが大幅に大きくなると、トレーニングデータの増加は、限られたパフォーマンス上のメリットしか得られない。
学習後コストとモデル性能のバランスをとるためには,Llama-3 および Qwen-2.5 シリーズモデルに対する広範な実験を行い,様々な共通プルーニング手法を用いてプルーニングを行った結果,P$^2$法と呼ばれるモデル後処理モデルに対するスケーリング \textbf{Law} for \textbf{P}ost-training が明らかになった。
さらに、P$^2$ Lawは、より大きなデータセットサイズ、より大きなモデルサイズ、より高いプルーニングレートに一般化することができ、プルーニング後のLLMのトレーニングに有用な洞察を提供する。
関連論文リスト
- The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
本稿では,大規模言語モデルに対する最適スパース事前学習構成の体系的検討を行う。
総トレーニング計算の25%でプルーニングを開始し、75%で終了すると、ほぼ最適の最終評価損失が得られることがわかった。
本稿では,事前学習よりも平均パラメータ数を使用するように,チンチラスケーリング法を修正した新しいスケーリング法を提案する。
論文 参考訳(メタデータ) (2025-01-21T20:23:22Z) - Scaling Laws for Precision [73.24325358259753]
トレーニングと推論の両方に"精度対応"のスケーリング法則を考案する。
推論では,学習後の量子化によって生じる劣化が,モデルがより多くのデータに基づいて訓練されるにつれて増加することが分かる。
トレーニングのために、我々のスケーリング法則は、異なるパーツの異なるモデルの損失を、異なる精度で予測することができる。
論文 参考訳(メタデータ) (2024-11-07T00:10:10Z) - A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
スケーリング法則は、より少ないパラメータやより少ないトレーニングセットで訓練が容易なモデルから外挿することで、ターゲットとなる機械学習モデルの損失を予測する。
我々は1000以上のスケーリング法則を推定し、新しいモデルファミリーにおけるスケーリング法則を推定するためのベストプラクティスを導出する。
論文 参考訳(メタデータ) (2024-10-15T17:59:10Z) - More Compute Is What You Need [3.184416958830696]
モデル性能はトランスフォーマーモデルに費やされる計算量に大きく依存することを示す新しいスケーリング法則を提案する。
a)推論効率、トレーニングは、より小さなモデルサイズとより大きなトレーニングデータセットを優先すべきであり、(b)利用可能なWebデータセットの枯渇を前提として、モデルサイズをスケールすることが、モデルパフォーマンスをさらに改善するための唯一の方法である、と予測する。
論文 参考訳(メタデータ) (2024-04-30T12:05:48Z) - Language models scale reliably with over-training and on downstream tasks [121.69867718185125]
スケーリング法則は、高価なトレーニング実行を引き出すための有用なガイドである。
しかし、現在の研究と言語モデルがどのように訓練されているかには差がある。
対照的に、スケーリング法則は主に推論における損失を予測するが、モデルは通常下流のタスクのパフォーマンスで比較される。
論文 参考訳(メタデータ) (2024-03-13T13:54:00Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
ネットワークトレーニングと一般化の解決可能なモデルとして,勾配降下で訓練されたランダムな特徴モデルを分析する。
我々の理論は、データの繰り返し再利用により、トレーニングとテスト損失のギャップが徐々に増大することを示している。
論文 参考訳(メタデータ) (2024-02-02T01:41:38Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
本研究は,非構造的重み空間を用いて,事前訓練中にのみ重みのサブセットを訓練する利点を示す。
我々は1.3Bパラメータ GPT-3 XL モデルに最大75%の間隔を誘導できることを示す。
論文 参考訳(メタデータ) (2023-03-18T17:56:01Z) - Same Pre-training Loss, Better Downstream: Implicit Bias Matters for
Language Models [46.24479693469042]
本稿では,(1)事前学習損失が下流性能を完全に説明できないこと,(2)事前学習損失がない場合の下流性能とモデルの平坦性はよく相関していることを示す。
論文 参考訳(メタデータ) (2022-10-25T17:45:36Z) - bert2BERT: Towards Reusable Pretrained Language Models [51.078081486422896]
本稿では,既存のより小さな事前学習モデルの知識を大規模モデルに効果的に伝達できるbert2BERTを提案する。
bert2BERTは、ほぼ半分の大きさのモデルを再利用することで、BERT_BASEとGPT_BASEの事前トレーニングに約45%と47%の計算コストを節約する。
論文 参考訳(メタデータ) (2021-10-14T04:05:25Z) - Scaling Laws for Acoustic Models [7.906034575114518]
近年の研究では、クロスエントロピー目的関数を持つ自己回帰生成モデルがスムーズなパワー-ロー関係を示すことが示されている。
自動予測符号損失で訓練された音響モデルは、まるで同様のスケーリング法則に従うかのように振る舞うことを示す。
論文 参考訳(メタデータ) (2021-06-11T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。