Bitcoin Research with a Transaction Graph Dataset
- URL: http://arxiv.org/abs/2411.10325v1
- Date: Fri, 15 Nov 2024 16:28:03 GMT
- Title: Bitcoin Research with a Transaction Graph Dataset
- Authors: Hugo Schnoering, Michalis Vazirgiannis,
- Abstract summary: This paper introduces a large scale dataset in the form of a transactions graph representing transactions between Bitcoin users.
The graph includes 252 million nodes and 785 million edges, covering a time span of nearly 13 years of and 670 million transactions.
Various graph neural network models are trained to predict node labels, establishing a baseline for future research.
- Score: 19.66391887460672
- License:
- Abstract: Bitcoin, launched in 2008 by Satoshi Nakamoto, established a new digital economy where value can be stored and transferred in a fully decentralized manner - alleviating the need for a central authority. This paper introduces a large scale dataset in the form of a transactions graph representing transactions between Bitcoin users along with a set of tasks and baselines. The graph includes 252 million nodes and 785 million edges, covering a time span of nearly 13 years of and 670 million transactions. Each node and edge is timestamped. As for supervised tasks we provide two labeled sets i. a 33,000 nodes based on entity type and ii. nearly 100,000 Bitcoin addresses labeled with an entity name and an entity type. This is the largest publicly available data set of bitcoin transactions designed to facilitate advanced research and exploration in this domain, overcoming the limitations of existing datasets. Various graph neural network models are trained to predict node labels, establishing a baseline for future research. In addition, several use cases are presented to demonstrate the dataset's applicability beyond Bitcoin analysis. Finally, all data and source code is made publicly available to enable reproducibility of the results.
Related papers
- ORBITAAL: A Temporal Graph Dataset of Bitcoin Entity-Entity Transactions [0.0]
ORBITAAL is the first comprehensive dataset based on temporal graph formalism.
The dataset covers all Bitcoin transactions from January 2009 to January 2021.
This dataset also provides details on entities such as their global BTC balance and associated public addresses.
arXiv Detail & Related papers (2024-08-26T09:48:45Z) - IT Strategic alignment in the decentralized finance (DeFi): CBDC and digital currencies [49.1574468325115]
Decentralized finance (DeFi) is a disruptive-based financial infrastructure.
This paper seeks to answer two main questions 1) What are the common IT elements in the DeFi?
And 2) How the elements to the IT strategic alignment in DeFi?
arXiv Detail & Related papers (2024-05-17T10:19:20Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - The Spatiotemporal Scaling Laws of Bitcoin Transactions [0.4779196219827508]
We study the unique patterns unique to Bitcoin.
We empirically characterize Bitcoin transactions'temporal scaling laws.
We introduce a Markovian model that effectively approximates Bitcoins' observedtemporal patterns.
arXiv Detail & Related papers (2023-09-21T08:34:47Z) - Demystifying Bitcoin Address Behavior via Graph Neural Networks [20.002509270755443]
BAClassifier is a tool that can automatically classify bitcoin addresses based on their behaviors.
We construct and release a large-scale annotated dataset that consists of over 2 million real-world bitcoin addresses.
arXiv Detail & Related papers (2022-11-26T14:55:50Z) - Convolutional Neural Networks on Manifolds: From Graphs and Back [122.06927400759021]
We propose a manifold neural network (MNN) composed of a bank of manifold convolutional filters and point-wise nonlinearities.
To sum up, we focus on the manifold model as the limit of large graphs and construct MNNs, while we can still bring back graph neural networks by the discretization of MNNs.
arXiv Detail & Related papers (2022-10-01T21:17:39Z) - BABD: A Bitcoin Address Behavior Dataset for Address Behavior Pattern
Analysis [36.42552617883664]
We build a dataset comprising Bitcoin transactions between 12 July 2019 and 26 May 2021.
This dataset contains 13 types of Bitcoin addresses, 5 categories of indicators with 148 features, and 544,462 labeled data.
We use our proposed dataset on common machine learning models, namely: k-nearest neighbors algorithm, decision tree, random forest, multilayer perceptron, and XGBoost.
arXiv Detail & Related papers (2022-04-10T06:46:51Z) - Source Free Unsupervised Graph Domain Adaptation [60.901775859601685]
Unsupervised Graph Domain Adaptation (UGDA) shows its practical value of reducing the labeling cost for node classification.
Most existing UGDA methods heavily rely on the labeled graph in the source domain.
In some real-world scenarios, the source graph is inaccessible because of privacy issues.
We propose a novel scenario named Source Free Unsupervised Graph Domain Adaptation (SFUGDA)
arXiv Detail & Related papers (2021-12-02T03:18:18Z) - Bitcoin Transaction Forecasting with Deep Network Representation
Learning [16.715475608359046]
This paper presents a novel approach to developing a Bitcoin transaction forecast model, DLForecast, by leveraging deep neural networks for learning Bitcoin transaction network representations.
We construct a time-decaying reachability graph and a time-decaying transaction pattern graph, aiming at capturing different types of spatial-temporal Bitcoin transaction patterns.
We show that our spatial-temporal forecasting model is efficient with fast runtime and effective with forecasting accuracy over 60% and improves the prediction performance by 50% when compared to forecasting model built on the static graph baseline.
arXiv Detail & Related papers (2020-07-15T21:11:32Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
Mining graph data has become a popular research topic in computer science.
The huge amount of network data has posed great challenges for efficient analysis.
This motivates the advent of graph representation which maps the graph into a low-dimension vector space.
arXiv Detail & Related papers (2020-01-02T02:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.