Demystifying Bitcoin Address Behavior via Graph Neural Networks
- URL: http://arxiv.org/abs/2211.14582v1
- Date: Sat, 26 Nov 2022 14:55:50 GMT
- Title: Demystifying Bitcoin Address Behavior via Graph Neural Networks
- Authors: Zhengjie Huang, Yunyang Huang, Peng Qian, Jianhai Chen, Qinming He
- Abstract summary: BAClassifier is a tool that can automatically classify bitcoin addresses based on their behaviors.
We construct and release a large-scale annotated dataset that consists of over 2 million real-world bitcoin addresses.
- Score: 20.002509270755443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bitcoin is one of the decentralized cryptocurrencies powered by a
peer-to-peer blockchain network. Parties who trade in the bitcoin network are
not required to disclose any personal information. Such property of anonymity,
however, precipitates potential malicious transactions to a certain extent.
Indeed, various illegal activities such as money laundering, dark network
trading, and gambling in the bitcoin network are nothing new now. While a
proliferation of work has been developed to identify malicious bitcoin
transactions, the behavior analysis and classification of bitcoin addresses are
largely overlooked by existing tools. In this paper, we propose BAClassifier, a
tool that can automatically classify bitcoin addresses based on their
behaviors. Technically, we come up with the following three key designs. First,
we consider casting the transactions of the bitcoin address into an address
graph structure, of which we introduce a graph node compression technique and a
graph structure augmentation method to characterize a unified graph
representation. Furthermore, we leverage a graph feature network to learn the
graph representations of each address and generate the graph embeddings.
Finally, we aggregate all graph embeddings of an address into the address-level
representation, and engage in a classification model to give the address
behavior classification. As a side contribution, we construct and release a
large-scale annotated dataset that consists of over 2 million real-world
bitcoin addresses and concerns 4 types of address behaviors. Experimental
results demonstrate that our proposed framework outperforms state-of-the-art
bitcoin address classifiers and existing classification models, where the
precision and F1-score are 96% and 95%, respectively. Our implementation and
dataset are released, hoping to inspire others.
Related papers
- Link Stealing Attacks Against Inductive Graph Neural Networks [60.931106032824275]
A graph neural network (GNN) is a type of neural network that is specifically designed to process graph-structured data.
Previous work has shown that transductive GNNs are vulnerable to a series of privacy attacks.
This paper conducts a comprehensive privacy analysis of inductive GNNs through the lens of link stealing attacks.
arXiv Detail & Related papers (2024-05-09T14:03:52Z) - The Spatiotemporal Scaling Laws of Bitcoin Transactions [0.4779196219827508]
We study the unique patterns unique to Bitcoin.
We empirically characterize Bitcoin transactions'temporal scaling laws.
We introduce a Markovian model that effectively approximates Bitcoins' observedtemporal patterns.
arXiv Detail & Related papers (2023-09-21T08:34:47Z) - Demystifying Fraudulent Transactions and Illicit Nodes in the Bitcoin
Network for Financial Forensics [8.97719386315469]
This paper presents a holistic applied data science approach to fraud detection in the Bitcoin network.
First, we contribute the Elliptic++ dataset, which extends the Elliptic transaction dataset to include over 822k Bitcoin wallet addresses (nodes)
Second, we perform fraud detection tasks on all four graphs by using diverse machine learning algorithms.
arXiv Detail & Related papers (2023-05-25T18:36:54Z) - Chainlet Orbits: Topological Address Embedding for the Bitcoin
Blockchain [15.099255988459602]
Rise of cryptocurrencies like Bitcoin, which enable transactions with a degree of pseudonymity, has led to a surge in various illicit activities.
We introduce an effective solution called Chainlet Orbits to embed Bitcoin addresses by leveraging their topological characteristics in transactions.
Our approach enables the use of interpretable and explainable machine learning models in as little as 15 minutes for most days on the Bitcoin transaction network.
arXiv Detail & Related papers (2023-05-18T21:16:59Z) - BABD: A Bitcoin Address Behavior Dataset for Address Behavior Pattern
Analysis [36.42552617883664]
We build a dataset comprising Bitcoin transactions between 12 July 2019 and 26 May 2021.
This dataset contains 13 types of Bitcoin addresses, 5 categories of indicators with 148 features, and 544,462 labeled data.
We use our proposed dataset on common machine learning models, namely: k-nearest neighbors algorithm, decision tree, random forest, multilayer perceptron, and XGBoost.
arXiv Detail & Related papers (2022-04-10T06:46:51Z) - Towards Malicious address identification in Bitcoin [3.646526715728388]
We generate the temporal and non-temporal feature set and train the Machine Learning (ML) algorithm over different temporal granularities to validate methods.
A comparative analysis of results show that the behavior of addresses in and Bitcoin is similar with respect to in-degree, out-degree and inter-event time.
We identify 3 suspects that showed malicious behavior across different temporal granularities.
arXiv Detail & Related papers (2021-12-22T08:11:58Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z) - Stealing Links from Graph Neural Networks [72.85344230133248]
Recently, neural networks were extended to graph data, which are known as graph neural networks (GNNs)
Due to their superior performance, GNNs have many applications, such as healthcare analytics, recommender systems, and fraud detection.
We propose the first attacks to steal a graph from the outputs of a GNN model that is trained on the graph.
arXiv Detail & Related papers (2020-05-05T13:22:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.