On the Cost of Model-Serving Frameworks: An Experimental Evaluation
- URL: http://arxiv.org/abs/2411.10337v1
- Date: Fri, 15 Nov 2024 16:36:21 GMT
- Title: On the Cost of Model-Serving Frameworks: An Experimental Evaluation
- Authors: Pasquale De Rosa, YĆ©rom-David Bromberg, Pascal Felber, Djob Mvondo, Valerio Schiavoni,
- Abstract summary: Serving strategies are crucial for deploying and managing models in production environments effectively.
These strategies ensure that models are available, scalable, reliable, and performant for real-world applications.
We show that DL-specific frameworks (TensorFlow Serving and TorchServe) display significantly lower latencies than the three general-purpose ML frameworks.
- Score: 2.6232657671486983
- License:
- Abstract: In machine learning (ML), the inference phase is the process of applying pre-trained models to new, unseen data with the objective of making predictions. During the inference phase, end-users interact with ML services to gain insights, recommendations, or actions based on the input data. For this reason, serving strategies are nowadays crucial for deploying and managing models in production environments effectively. These strategies ensure that models are available, scalable, reliable, and performant for real-world applications, such as time series forecasting, image classification, natural language processing, and so on. In this paper, we evaluate the performances of five widely-used model serving frameworks (TensorFlow Serving, TorchServe, MLServer, MLflow, and BentoML) under four different scenarios (malware detection, cryptocoin prices forecasting, image classification, and sentiment analysis). We demonstrate that TensorFlow Serving is able to outperform all the other frameworks in serving deep learning (DL) models. Moreover, we show that DL-specific frameworks (TensorFlow Serving and TorchServe) display significantly lower latencies than the three general-purpose ML frameworks (BentoML, MLFlow, and MLServer).
Related papers
- Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL is a series of MLLMs with parameters ranging from 1B to 4B, which achieves 90% of the performance with only 5% of the parameters.
We develop a unified adaptation framework for Mini-InternVL, which enables our models to transfer and outperform specialized models in downstream tasks.
arXiv Detail & Related papers (2024-10-21T17:58:20Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - SeBS-Flow: Benchmarking Serverless Cloud Function Workflows [51.4200085836966]
We propose the first serverless workflow benchmarking suite SeBS-Flow.
SeBS-Flow includes six real-world application benchmarks and four microbenchmarks representing different computational patterns.
We conduct comprehensive evaluations on three major cloud platforms, assessing performance, cost, scalability, and runtime deviations.
arXiv Detail & Related papers (2024-10-04T14:52:18Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
This paper presents ML-SUPERB2.0, which is a new benchmark for evaluating pre-trained SSL and supervised speech models.
We find performance improvements over the setup of ML-SUPERB, but performance depends on the downstream model design.
Also, we find large performance differences between languages and datasets, suggesting the need for more targeted approaches.
arXiv Detail & Related papers (2024-06-12T21:01:26Z) - MLOps: A Step Forward to Enterprise Machine Learning [0.0]
This research presents a detailed review of MLOps, its benefits, difficulties, evolutions, and important underlying technologies.
The MLOps workflow is explained in detail along with the various tools necessary for both model and data exploration and deployment.
This article also puts light on the end-to-end production of ML projects using various maturity levels of automated pipelines.
arXiv Detail & Related papers (2023-05-27T20:44:14Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Scanflow: A multi-graph framework for Machine Learning workflow
management, supervision, and debugging [0.0]
We propose a novel containerized directed graph framework to support end-to-end Machine Learning workflow management.
The framework allows defining and deploying ML in containers, tracking their metadata, checking their behavior in production, and improving the models by using both learned and human-provided knowledge.
arXiv Detail & Related papers (2021-11-04T17:01:12Z) - Exploring the potential of flow-based programming for machine learning
deployment in comparison with service-oriented architectures [8.677012233188968]
We argue that part of the reason is infrastructure that was not designed for activities around data collection and analysis.
We propose to consider flow-based programming with data streams as an alternative to commonly used service-oriented architectures for building software applications.
arXiv Detail & Related papers (2021-08-09T15:06:02Z) - MLDemon: Deployment Monitoring for Machine Learning Systems [10.074466859579571]
We propose a novel approach, MLDemon, for ML DEployment MONitoring.
MLDemon integrates both unlabeled features and a small amount of on-demand labeled examples over time to produce a real-time estimate.
On temporal datasets with diverse distribution drifts and models, MLDemon substantially outperforms existing monitoring approaches.
arXiv Detail & Related papers (2021-04-28T07:59:10Z) - MLModelScope: A Distributed Platform for Model Evaluation and
Benchmarking at Scale [32.62513495487506]
Machine Learning (ML) and Deep Learning (DL) innovations are being introduced at such a rapid pace that researchers are hard-pressed to analyze and study them.
The complicated procedures for evaluating innovations, along with the lack of standard and efficient ways of specifying and provisioning ML/DL evaluation, is a major "pain point" for the community.
This paper proposes MLModelScope, an open-source, framework/ hardware agnostic, and customizable design that enables repeatable, fair, and scalable model evaluation and benchmarking.
arXiv Detail & Related papers (2020-02-19T17:13:01Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
In this paper, we develop a parameter efficient transfer learning architecture, termed as PeterRec.
PeterRec allows the pre-trained parameters to remain unaltered during fine-tuning by injecting a series of re-learned neural networks.
We perform extensive experimental ablation to show the effectiveness of the learned user representation in five downstream tasks.
arXiv Detail & Related papers (2020-01-13T14:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.