A Survey of Event Causality Identification: Taxonomy, Challenges, Assessment, and Prospects
- URL: http://arxiv.org/abs/2411.10371v5
- Date: Thu, 24 Jul 2025 07:53:24 GMT
- Title: A Survey of Event Causality Identification: Taxonomy, Challenges, Assessment, and Prospects
- Authors: Qing Cheng, Zefan Zeng, Xingchen Hu, Yuehang Si, Zhong Liu,
- Abstract summary: Event Causality Identification (ECI) has become an essential task in Natural Language Processing (NLP)<n>This comprehensive survey systematically investigates fundamental concepts and models, developing a systematic taxonomy and critically evaluating diverse models.
- Score: 6.492836595169771
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event Causality Identification (ECI) has become an essential task in Natural Language Processing (NLP), focused on automatically detecting causal relationships between events within texts. This comprehensive survey systematically investigates fundamental concepts and models, developing a systematic taxonomy and critically evaluating diverse models. We begin by defining core concepts, formalizing the ECI problem, and outlining standard evaluation protocols. Our classification framework divides ECI models into two primary tasks: Sentence-level Event Causality Identification (SECI) and Document-level Event Causality Identification (DECI). For SECI, we review models employing feature pattern-based matching, machine learning classifiers, deep semantic encoding, prompt-based fine-tuning, and causal knowledge pre-training, alongside data augmentation strategies. For DECI, we focus on approaches utilizing deep semantic encoding, event graph reasoning, and prompt-based fine-tuning. Special attention is given to recent advancements in multi-lingual and cross-lingual ECI, as well as zero-shot ECI leveraging Large Language Models (LLMs). We analyze the strengths, limitations, and unresolved challenges associated with each approach. Extensive quantitative evaluations are conducted on four benchmark datasets to rigorously assess the performance of various ECI models. We conclude by discussing future research directions and highlighting opportunities to advance the field further.
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.
With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.
We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Chinese Grammatical Error Correction: A Survey [2.6914312267666705]
Chinese Grammatical Error Correction (CGEC) is a critical task in Natural Language Processing.<n>CGEC addresses the growing demand for automated writing assistance in both second-language (L2) and native (L1) Chinese writing.<n>This survey provides a comprehensive review of CGEC research, covering datasets, annotation schemes, evaluation methodologies, and system advancements.
arXiv Detail & Related papers (2025-04-01T17:14:50Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
We propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL)
It employs self-generated natural language critiques as feedback to guide the step-level search process.
This approach bypasses the need for task-specific verifiers and the associated training overhead.
arXiv Detail & Related papers (2025-03-21T17:59:55Z) - A Cooperative Multi-Agent Framework for Zero-Shot Named Entity Recognition [71.61103962200666]
Zero-shot named entity recognition (NER) aims to develop entity recognition systems from unannotated text corpora.<n>Recent work has adapted large language models (LLMs) for zero-shot NER by crafting specialized prompt templates.<n>We introduce the cooperative multi-agent system (CMAS), a novel framework for zero-shot NER.
arXiv Detail & Related papers (2025-02-25T23:30:43Z) - Continual Learning Should Move Beyond Incremental Classification [51.23416308775444]
Continual learning (CL) is the sub-field of machine learning concerned with accumulating knowledge in dynamic environments.
Here, we argue that maintaining such a focus limits both theoretical development and practical applicability of CL methods.
We identify three fundamental challenges: (C1) the nature of continuity in learning problems, (C2) the choice of appropriate spaces and metrics for measuring similarity, and (C3) the role of learning objectives beyond classification.
arXiv Detail & Related papers (2025-02-17T15:40:13Z) - A Survey on Vulnerability Prioritization: Taxonomy, Metrics, and Research Challenges [20.407534993667607]
Resource constraints necessitate effective vulnerability prioritization strategies.
This paper introduces a novel taxonomy that categorizes metrics into severity, exploitability, contextual factors, predictive indicators, and aggregation methods.
arXiv Detail & Related papers (2025-02-16T10:33:37Z) - A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
Advancements in image segmentation play an integral role within the greater scope of Deep Learning-based computer vision.
Uncertainty quantification has been extensively studied within this context, enabling expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision making.
This work provides a comprehensive overview of probabilistic segmentation by discussing fundamental concepts in uncertainty that govern advancements in the field and the application to various tasks.
arXiv Detail & Related papers (2024-11-25T13:26:09Z) - Deliberate Reasoning in Language Models as Structure-Aware Planning with an Accurate World Model [14.480267340831542]
Structure-aware Planning with an Accurate World Model (SWAP)<n>SWAP integrates structured knowledge representation with learned planning.<n>We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks.
arXiv Detail & Related papers (2024-10-04T04:23:36Z) - A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL) provides reliable uncertainty estimation with minimal additional computation in a single forward pass.
We first delve into the theoretical foundation of EDL, the subjective logic theory, and discuss its distinctions from other uncertainty estimation frameworks.
We elaborate on its extensive applications across various machine learning paradigms and downstream tasks.
arXiv Detail & Related papers (2024-09-07T05:55:06Z) - On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey [82.49623756124357]
Zero-shot image recognition (ZSIR) aims at empowering models to recognize and reason in unseen domains.
This paper presents a broad review of recent advances in element-wise ZSIR.
We first attempt to integrate the three basic ZSIR tasks of object recognition, compositional recognition, and foundation model-based open-world recognition into a unified element-wise perspective.
arXiv Detail & Related papers (2024-08-09T05:49:21Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - A Logically Consistent Chain-of-Thought Approach for Stance Detection [4.895189262775054]
Zero-shot stance detection (ZSSD) aims to detect stances toward unseen targets.
We introduce a novel approach named Logically Consistent Chain-of-Thought (LC-CoT) for ZSSD.
LC-CoT improves stance detection by ensuring relevant and logically sound knowledge extraction.
arXiv Detail & Related papers (2023-12-26T13:54:00Z) - Coherent Entity Disambiguation via Modeling Topic and Categorical
Dependency [87.16283281290053]
Previous entity disambiguation (ED) methods adopt a discriminative paradigm, where prediction is made based on matching scores between mention context and candidate entities.
We propose CoherentED, an ED system equipped with novel designs aimed at enhancing the coherence of entity predictions.
We achieve new state-of-the-art results on popular ED benchmarks, with an average improvement of 1.3 F1 points.
arXiv Detail & Related papers (2023-11-06T16:40:13Z) - SSL Framework for Causal Inconsistency between Structures and
Representations [23.035761299444953]
Cross-pollination of deep learning and causal discovery has catalyzed a burgeoning field of research seeking to elucidate causal relationships within non-statistical data forms like images, videos, and text.
We theoretically develop intervention strategies suitable for indefinite data and derive causal consistency condition (CCC)
CCC could potentially play an influential role in various fields.
arXiv Detail & Related papers (2023-10-28T08:29:49Z) - Few-shot Class-incremental Learning: A Survey [16.729567512584822]
Few-shot Class-Incremental Learning (FSCIL) presents a unique challenge in Machine Learning (ML)
This paper aims to provide a comprehensive and systematic review of FSCIL.
arXiv Detail & Related papers (2023-08-13T13:01:21Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - Review of coreference resolution in English and Persian [8.604145658574689]
Coreference resolution (CR) identifies expressions referring to the same real-world entity.
This paper explores the latest advancements in CR, spanning coreference and anaphora resolution.
Recognizing the unique challenges of Persian CR, we dedicate a focused analysis to this under-resourced language.
arXiv Detail & Related papers (2022-11-08T18:14:09Z) - CogME: A Cognition-Inspired Multi-Dimensional Evaluation Metric for Story Understanding [19.113385429326808]
We introduce CogME, a cognition-inspired, multi-dimensional evaluation metric designed for AI models focusing on story understanding.
We argue the need for metrics based on understanding the nature of tasks and designed to align closely with human cognitive processes.
This approach provides insights beyond traditional overall scores and paves the way for more sophisticated AI development targeting higher cognitive functions.
arXiv Detail & Related papers (2021-07-21T02:33:37Z) - An Interpretable and Uncertainty Aware Multi-Task Framework for
Multi-Aspect Sentiment Analysis [15.755185152760083]
Document-level Multi-aspect Sentiment Classification (DMSC) is a challenging and imminent problem.
We propose a deliberate self-attention-based deep neural network model, namely FEDAR, for the DMSC problem.
FEDAR can achieve competitive performance while also being able to interpret the predictions made.
arXiv Detail & Related papers (2020-09-18T22:32:39Z) - Uncertainty Quantification for Deep Context-Aware Mobile Activity
Recognition and Unknown Context Discovery [85.36948722680822]
We develop a context-aware mixture of deep models termed the alpha-beta network.
We improve accuracy and F score by 10% by identifying high-level contexts.
In order to ensure training stability, we have used a clustering-based pre-training in both public and in-house datasets.
arXiv Detail & Related papers (2020-03-03T19:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.