Repurposing Stable Diffusion Attention for Training-Free Unsupervised Interactive Segmentation
- URL: http://arxiv.org/abs/2411.10411v1
- Date: Fri, 15 Nov 2024 18:29:59 GMT
- Title: Repurposing Stable Diffusion Attention for Training-Free Unsupervised Interactive Segmentation
- Authors: Markus Karmann, Onay Urfalioglu,
- Abstract summary: Recent progress in interactive point prompt based Image allows to significantly reduce the manual effort to obtain high quality semantic labels.
We propose a novel unsupervised and training-free approach based solely on the self-attention of Stable Diffusion.
- Score: 1.878433493707693
- License:
- Abstract: Recent progress in interactive point prompt based Image Segmentation allows to significantly reduce the manual effort to obtain high quality semantic labels. State-of-the-art unsupervised methods use self-supervised pre-trained models to obtain pseudo-labels which are used in training a prompt-based segmentation model. In this paper, we propose a novel unsupervised and training-free approach based solely on the self-attention of Stable Diffusion. We interpret the self-attention tensor as a Markov transition operator, which enables us to iteratively construct a Markov chain. Pixel-wise counting of the required number of iterations along the Markov-chain to reach a relative probability threshold yields a Markov-iteration-map, which we simply call a Markov-map. Compared to the raw attention maps, we show that our proposed Markov-map has less noise, sharper semantic boundaries and more uniform values within semantically similar regions. We integrate the Markov-map in a simple yet effective truncated nearest neighbor framework to obtain interactive point prompt based segmentation. Despite being training-free, we experimentally show that our approach yields excellent results in terms of Number of Clicks (NoC), even outperforming state-of-the-art training based unsupervised methods in most of the datasets.
Related papers
- SmooSeg: Smoothness Prior for Unsupervised Semantic Segmentation [27.367986520072147]
Unsupervised semantic segmentation is a challenging task that segments images into semantic groups without manual annotation.
We propose a novel approach called SmooSeg that harnesses self-supervised learning methods to model the closeness relationships among observations as smoothness signals.
Our SmooSeg significantly outperforms STEGO in terms of pixel accuracy on three datasets.
arXiv Detail & Related papers (2023-10-27T03:29:25Z) - Label-efficient Segmentation via Affinity Propagation [27.016747627689288]
Weakly-supervised segmentation with label-efficient sparse annotations has attracted increasing research attention to reduce the cost of laborious pixel-wise labeling process.
We formulate the affinity modeling as an affinity propagation process, and propose a local and a global pairwise affinity terms to generate accurate soft pseudo labels.
An efficient algorithm is also developed to reduce significantly the computational cost.
arXiv Detail & Related papers (2023-10-16T15:54:09Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Image Understands Point Cloud: Weakly Supervised 3D Semantic
Segmentation via Association Learning [59.64695628433855]
We propose a novel cross-modality weakly supervised method for 3D segmentation, incorporating complementary information from unlabeled images.
Basically, we design a dual-branch network equipped with an active labeling strategy, to maximize the power of tiny parts of labels.
Our method even outperforms the state-of-the-art fully supervised competitors with less than 1% actively selected annotations.
arXiv Detail & Related papers (2022-09-16T07:59:04Z) - Incremental Learning in Semantic Segmentation from Image Labels [18.404068463921426]
Existing semantic segmentation approaches achieve impressive results, but struggle to update their models incrementally as new categories are uncovered.
This paper proposes a novel framework for Weakly Incremental Learning for Semantics, that aims at learning to segment new classes from cheap and largely available image-level labels.
As opposed to existing approaches, that need to generate pseudo-labels offline, we use an auxiliary classifier, trained with image-level labels and regularized by the segmentation model, to obtain pseudo-supervision online and update the model incrementally.
arXiv Detail & Related papers (2021-12-03T12:47:12Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - One Thing One Click: A Self-Training Approach for Weakly Supervised 3D
Semantic Segmentation [78.36781565047656]
We propose "One Thing One Click," meaning that the annotator only needs to label one point per object.
We iteratively conduct the training and label propagation, facilitated by a graph propagation module.
Our results are also comparable to those of the fully supervised counterparts.
arXiv Detail & Related papers (2021-04-06T02:27:25Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
Weakly-supervised semantic segmentation is a challenging task as no pixel-wise label information is provided for training.
We propose an iterative algorithm to learn such pairwise relations.
We show that the proposed algorithm performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2020-02-19T10:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.