From Few to More: Scribble-based Medical Image Segmentation via Masked Context Modeling and Continuous Pseudo Labels
- URL: http://arxiv.org/abs/2408.12814v1
- Date: Fri, 23 Aug 2024 03:19:20 GMT
- Title: From Few to More: Scribble-based Medical Image Segmentation via Masked Context Modeling and Continuous Pseudo Labels
- Authors: Zhisong Wang, Yiwen Ye, Ziyang Chen, Minglei Shu, Yong Xia,
- Abstract summary: We propose a weakly supervised framework designed for medical image segmentation.
MaCo employs masked context modeling and continuous pseudo labels.
We evaluate MaCo against other weakly supervised methods using three public datasets.
- Score: 17.433808197776003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scribble-based weakly supervised segmentation techniques offer comparable performance to fully supervised methods while significantly reducing annotation costs, making them an appealing alternative. Existing methods often rely on auxiliary tasks to enforce semantic consistency and use hard pseudo labels for supervision. However, these methods often overlook the unique requirements of models trained with sparse annotations. Since the model must predict pixel-wise segmentation maps with limited annotations, the ability to handle varying levels of annotation richness is critical. In this paper, we adopt the principle of `from few to more' and propose MaCo, a weakly supervised framework designed for medical image segmentation. MaCo employs masked context modeling (MCM) and continuous pseudo labels (CPL). MCM uses an attention-based masking strategy to disrupt the input image, compelling the model's predictions to remain consistent with those of the original image. CPL converts scribble annotations into continuous pixel-wise labels by applying an exponential decay function to distance maps, resulting in continuous maps that represent the confidence of each pixel belonging to a specific category, rather than using hard pseudo labels. We evaluate MaCo against other weakly supervised methods using three public datasets. The results indicate that MaCo outperforms competing methods across all datasets, setting a new record in weakly supervised medical image segmentation.
Related papers
- Pointly-Supervised Panoptic Segmentation [106.68888377104886]
We propose a new approach to applying point-level annotations for weakly-supervised panoptic segmentation.
Instead of the dense pixel-level labels used by fully supervised methods, point-level labels only provide a single point for each target as supervision.
We formulate the problem in an end-to-end framework by simultaneously generating panoptic pseudo-masks from point-level labels and learning from them.
arXiv Detail & Related papers (2022-10-25T12:03:51Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Automatic segmentation of meniscus based on MAE self-supervision and
point-line weak supervision paradigm [2.445445375557563]
We introduce the self-supervised method MAE(Masked Autoencoders) into knee joint images to provide a good initial weight for the segmentation model.
Secondly, we propose a weakly supervised paradigm for meniscus segmentation based on the combination of point and line to reduce the time of labeling.
arXiv Detail & Related papers (2022-05-07T02:57:50Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Scribble-Supervised Medical Image Segmentation via Dual-Branch Network
and Dynamically Mixed Pseudo Labels Supervision [15.414578073908906]
We propose a simple yet efficient scribble-supervised image segmentation method and apply it to cardiac MRI segmentation.
By combining the scribble supervision and auxiliary pseudo labels supervision, the dual-branch network can efficiently learn from scribble annotations end-to-end.
arXiv Detail & Related papers (2022-03-04T02:50:30Z) - POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring [3.4253416336476246]
Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity of images and the lack of method generalization to unseen domains.
We propose POPCORN, a novel method combining consistency regularization and pseudo-labeling designed for image segmentation.
arXiv Detail & Related papers (2021-09-13T23:36:36Z) - Towards Single Stage Weakly Supervised Semantic Segmentation [2.28438857884398]
We present a single-stage approach to weakly supervised semantic segmentation.
We use point annotations to generate reliable, on-the-fly pseudo-masks.
We significantly outperform other SOTA WSSS methods on recent real-world datasets.
arXiv Detail & Related papers (2021-06-18T18:34:50Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Causal Intervention for Weakly-Supervised Semantic Segmentation [122.1846968696862]
We aim to generate better pixel-level pseudo-masks by using only image-level labels.
We propose a structural causal model to analyze the causalities among images, contexts, and class labels.
Based on it, we develop a new method: Context Adjustment (CONTA), to remove the confounding bias in image-level classification.
arXiv Detail & Related papers (2020-09-26T09:26:29Z) - Self-supervised Equivariant Attention Mechanism for Weakly Supervised
Semantic Segmentation [93.83369981759996]
We propose a self-supervised equivariant attention mechanism (SEAM) to discover additional supervision and narrow the gap.
Our method is based on the observation that equivariance is an implicit constraint in fully supervised semantic segmentation.
We propose consistency regularization on predicted CAMs from various transformed images to provide self-supervision for network learning.
arXiv Detail & Related papers (2020-04-09T14:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.