論文の概要: Llama Guard 3 Vision: Safeguarding Human-AI Image Understanding Conversations
- arxiv url: http://arxiv.org/abs/2411.10414v1
- Date: Fri, 15 Nov 2024 18:34:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:39:23.512339
- Title: Llama Guard 3 Vision: Safeguarding Human-AI Image Understanding Conversations
- Title(参考訳): Llama Guard 3 Vision: 人間のAI画像理解会話の保護
- Authors: Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti,
- Abstract要約: Llama Guard 3 Visionは、画像理解を伴う人間とAIの会話のためのマルチモーダルLLMベースの安全ガードである。
Llama 3.2-Visionで微調整され、MLCommons分類を用いて内部ベンチマークで強い性能を示す。
私たちは、Llama Guard 3 Visionが、マルチモーダル機能を備えた人間とAIの会話のための、より有能で堅牢なコンテンツモデレーションツールを構築するための出発点となると信じています。
- 参考スコア(独自算出の注目度): 8.217291890346278
- License:
- Abstract: We introduce Llama Guard 3 Vision, a multimodal LLM-based safeguard for human-AI conversations that involves image understanding: it can be used to safeguard content for both multimodal LLM inputs (prompt classification) and outputs (response classification). Unlike the previous text-only Llama Guard versions (Inan et al., 2023; Llama Team, 2024b,a), it is specifically designed to support image reasoning use cases and is optimized to detect harmful multimodal (text and image) prompts and text responses to these prompts. Llama Guard 3 Vision is fine-tuned on Llama 3.2-Vision and demonstrates strong performance on the internal benchmarks using the MLCommons taxonomy. We also test its robustness against adversarial attacks. We believe that Llama Guard 3 Vision serves as a good starting point to build more capable and robust content moderation tools for human-AI conversation with multimodal capabilities.
- Abstract(参考訳): Llama Guard 3 Visionは,マルチモーダルLLM入力(プロンプト分類)と出力(応答分類)の両方に対するコンテンツ保護に使用可能な,画像理解を伴う人間とAIの会話のためのマルチモーダルLLMベースのセーフガードである。
以前のテキストのみのLlama Guardバージョン(Inan et al , 2023; Llama Team, 2024b, a)とは異なり、画像推論のユースケースをサポートするように設計されており、有害なマルチモーダル(テキストと画像)プロンプトやテキスト応答を検出するように最適化されている。
Llama Guard 3 VisionはLlama 3.2-Visionで微調整され、MLCommons分類を使用して内部ベンチマークで強い性能を示す。
また、敵の攻撃に対して堅牢性をテストする。
私たちは、Llama Guard 3 Visionが、マルチモーダル機能を備えた人間とAIの会話のための、より有能で堅牢なコンテンツモデレーションツールを構築するための出発点となると信じています。
関連論文リスト
- ETA: Evaluating Then Aligning Safety of Vision Language Models at Inference Time [12.160713548659457]
対向的な視覚入力は、容易にVLM防御機構をバイパスすることができる。
本稿では,入力された視覚的内容と出力応答を評価する2相推論時間アライメントフレームワークを提案する。
実験の結果, ETAは無害性, 有用性, 効率の点で, ベースライン法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-09T07:21:43Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - Progressive Multi-modal Conditional Prompt Tuning [92.50645776024624]
事前学習された視覚言語モデル(VLM)は、プロンプトによる顕著な一般化能力を示している。
本稿では,ProMPT(Progressive Multi-modal Conditional Prompt Tuning)を提案する。
ProMPTは、画像と電流の符号化情報を反復的に利用することにより、V-L機能の最適化と整合化を繰り返す構造を利用する。
論文 参考訳(メタデータ) (2024-04-18T02:40:31Z) - LION : Empowering Multimodal Large Language Model with Dual-Level Visual
Knowledge [58.82222646803248]
MLLM(Multimodal Large Language Models)は、マルチモーダル信号の知覚と理解が可能なLLMを提供する。
既存のMLLMの多くは、大まかに整列された画像テキストペアで事前訓練された視覚エンコーダを採用しており、視覚知識の抽出と推論が不十分である。
本稿では,2段階の視覚的知識を注入することによってMLLMを増強する,デュアルレベルvIsual knedgeOwl eNhanced Multimodal Large Language Model (LION)を提案する。
論文 参考訳(メタデータ) (2023-11-20T15:56:44Z) - Adversarial Prompt Tuning for Vision-Language Models [86.5543597406173]
AdvPT(Adversarial Prompt Tuning)は、視覚言語モデル(VLM)における画像エンコーダの対向ロバスト性を高める技術である。
我々は,AdvPTが白箱攻撃や黒箱攻撃に対する抵抗性を向上し,既存の画像処理による防御技術と組み合わせることで相乗効果を示すことを示した。
論文 参考訳(メタデータ) (2023-11-19T07:47:43Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
MLLM(Multi-modal large language model)は、大規模言語モデル(LLM)に基づいて訓練される。
マルチモーダルなタスクでは優れているが、MLLMの純粋なNLP能力はしばしば過小評価され、テストされていない。
LLMをMLLMに移行するための一般的な戦略である視覚的インストラクションチューニングは、予期せぬ、興味深いことに、改善された真理性と倫理的整合性の両方を達成するのに役立ちます。
論文 参考訳(メタデータ) (2023-09-13T17:57:21Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z) - BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs [101.50522135049198]
BuboGPTはマルチモーダルなLLMで、視覚、音声、言語間の相互対話を行うことができる。
1)文中のエンティティを抽出し、画像中の対応するマスクを見つけるSAMに基づく、市販のビジュアルグラウンドモジュール。
実験の結果,BuboGPTは人間との相互作用において,印象的なマルチモーダル理解と視覚的接地能力を実現することがわかった。
論文 参考訳(メタデータ) (2023-07-17T15:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。