How quantum computing can enhance biomarker discovery for multi-factorial diseases
- URL: http://arxiv.org/abs/2411.10511v1
- Date: Fri, 15 Nov 2024 16:50:05 GMT
- Title: How quantum computing can enhance biomarker discovery for multi-factorial diseases
- Authors: Frederik F. Flöther, Daniel Blankenberg, Maria Demidik, Karl Jansen, Rajiv Krishnakumar, Nouamane Laanait, Laxmi Parida, Carl Saab, Filippo Utro,
- Abstract summary: Quantum algorithms, particularly in machine learning, are mapped to key applications in biomarker discovery.
The opportunities and challenges associated with the algorithms and applications are discussed.
An outlook is provided concerning open research challenges.
- Score: 0.14511217610551727
- License:
- Abstract: Biomarkers play a central role in medicine's gradual progress towards proactive, personalized precision diagnostics and interventions. However, finding biomarkers that provide very early indicators of a change in health status, particularly for multi-factorial diseases, has been challenging. Discovery of such biomarkers stands to benefit significantly from advanced information processing and means to detect complex correlations, which quantum computing offers. In this perspective paper, quantum algorithms, particularly in machine learning, are mapped to key applications in biomarker discovery. The opportunities and challenges associated with the algorithms and applications are discussed. The analysis is structured according to different data types - multi-dimensional, time series, and erroneous data - and covers key data modalities in healthcare - electronic health records (EHRs), omics, and medical images. An outlook is provided concerning open research challenges.
Related papers
- Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits [0.7968706282619793]
Multi multiplexed imaging allows for simultaneous visualization of multiple biomarkers in a single section.
Data from multiplexed imaging requires sophisticated computational methods for preprocessing, segmentation, feature extraction, and spatial analysis.
PathML is an AI-powered platform that streamlines image analysis, making complex interpretation accessible for clinical and research settings.
arXiv Detail & Related papers (2024-11-01T18:02:41Z) - Multi-Omic and Quantum Machine Learning Integration for Lung Subtypes Classification [0.0]
The fusion of quantum computing and machine learning holds promise for unraveling complex patterns within multi-omics datasets.
We developed a method for finding the best differentiating features between LUAD and LUSC datasets, which has the potential for biomarker discovery.
arXiv Detail & Related papers (2024-10-02T23:16:31Z) - Simplicity within biological complexity [0.0]
We survey the literature and argue for the development of a comprehensive framework for embedding of multi-scale molecular network data.
Network embedding methods map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships.
We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation.
arXiv Detail & Related papers (2024-05-15T13:32:45Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis:
A review [2.2268038840298714]
We review the state-of-the-art machine learning studies that adopted the fusion of biomedical knowledge and data.
We provide an overview of diverse forms of knowledge representation and current strategies of knowledge integration into machine learning pipelines.
arXiv Detail & Related papers (2024-01-12T07:01:36Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Label scarcity in biomedicine: Data-rich latent factor discovery
enhances phenotype prediction [102.23901690661916]
Low-dimensional embedding spaces can be derived from the UK Biobank population dataset to enhance data-scarce prediction of health indicators, lifestyle and demographic characteristics.
Performances gains from semisupervison approaches will probably become an important ingredient for various medical data science applications.
arXiv Detail & Related papers (2021-10-12T16:25:50Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
We propose a new approach for dealing with high-dimensional binary classification problems that combines ideas from regularization and ensembling.
We demonstrate the good performance of our method in terms of prediction accuracy and identification of key biomarkers using several medical datasets involving common diseases such as cancer, multiple sclerosis and psoriasis.
arXiv Detail & Related papers (2021-02-17T05:57:26Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.