Voxel-Aggergated Feature Synthesis: Efficient Dense Mapping for Simulated 3D Reasoning
- URL: http://arxiv.org/abs/2411.10616v1
- Date: Fri, 15 Nov 2024 22:37:56 GMT
- Title: Voxel-Aggergated Feature Synthesis: Efficient Dense Mapping for Simulated 3D Reasoning
- Authors: Owen Burns, Rizwan Qureshi,
- Abstract summary: Voxel-Aggregated Feature Synthesis (VAFS) is a novel approach to dense 3D mapping in simulation.
VAFS drastically reduces computation by using the segmented point cloud computed by a simulator's physics engine.
We test the resulting representation by assessing the IoU scores of semantic queries for different objects in the simulated scene.
- Score: 3.199782544428545
- License:
- Abstract: We address the issue of the exploding computational requirements of recent State-of-the-art (SOTA) open set multimodel 3D mapping (dense 3D mapping) algorithms and present Voxel-Aggregated Feature Synthesis (VAFS), a novel approach to dense 3D mapping in simulation. Dense 3D mapping involves segmenting and embedding sequential RGBD frames which are then fused into 3D. This leads to redundant computation as the differences between frames are small but all are individually segmented and embedded. This makes dense 3D mapping impractical for research involving embodied agents in which the environment, and thus the mapping, must be modified with regularity. VAFS drastically reduces this computation by using the segmented point cloud computed by a simulator's physics engine and synthesizing views of each region. This reduces the number of features to embed from the number of captured RGBD frames to the number of objects in the scene, effectively allowing a "ground truth" semantic map to be computed an order of magnitude faster than traditional methods. We test the resulting representation by assessing the IoU scores of semantic queries for different objects in the simulated scene, and find that VAFS exceeds the accuracy and speed of prior dense 3D mapping techniques.
Related papers
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - Toward General Object-level Mapping from Sparse Views with 3D Diffusion Priors [8.701106353658346]
General Object-level mapping builds a 3D map of objects in a scene with detailed shapes and poses from multi-view sensor observations.
Recent work introduces generative shape priors for object-level mapping from sparse views, but is limited to single-category objects.
In this work, we propose a General Object-level Mapping system, GOM, which leverages a 3D diffusion model as shape prior with multi-category support and outputs Neural Radiance Fields (NeRFs) for both texture and geometry for all objects in a scene.
arXiv Detail & Related papers (2024-10-07T21:33:30Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
We introduce SAI3D, a novel zero-shot 3D instance segmentation approach.
Our method partitions a 3D scene into geometric primitives, which are then progressively merged into 3D instance segmentations.
Empirical evaluations on ScanNet, Matterport3D and the more challenging ScanNet++ datasets demonstrate the superiority of our approach.
arXiv Detail & Related papers (2023-12-17T09:05:47Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - Incremental 3D Semantic Scene Graph Prediction from RGB Sequences [86.77318031029404]
We propose a real-time framework that incrementally builds a consistent 3D semantic scene graph of a scene given an RGB image sequence.
Our method consists of a novel incremental entity estimation pipeline and a scene graph prediction network.
The proposed network estimates 3D semantic scene graphs with iterative message passing using multi-view and geometric features extracted from the scene entities.
arXiv Detail & Related papers (2023-05-04T11:32:16Z) - SHINE-Mapping: Large-Scale 3D Mapping Using Sparse Hierarchical Implicit
Neural Representations [37.733802382489515]
This paper addresses the problems of achieving large-scale 3D reconstructions with implicit representations using 3D LiDAR measurements.
We learn and store implicit features through an octree-based hierarchical structure, which is sparse and sparse.
Our experiments show that our 3D reconstructions are more accurate, complete, and memory-efficient than current state-of-the-art 3D mapping methods.
arXiv Detail & Related papers (2022-10-05T14:38:49Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images.
Planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods.
The proposed method outperforms previous methods by a large margin on 3D reconstruction quality.
arXiv Detail & Related papers (2022-05-05T17:59:55Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3D object detection methods exploit either voxel-based or point-based features to represent 3D objects in a scene.
We introduce in this paper a novel single-stage 3D detection method having the merit of both voxel-based and point-based features.
arXiv Detail & Related papers (2021-04-02T06:34:49Z) - SCFusion: Real-time Incremental Scene Reconstruction with Semantic
Completion [86.77318031029404]
We propose a framework that performs scene reconstruction and semantic scene completion jointly in an incremental and real-time manner.
Our framework relies on a novel neural architecture designed to process occupancy maps and leverages voxel states to accurately and efficiently fuse semantic completion with the 3D global model.
arXiv Detail & Related papers (2020-10-26T15:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.