Awaker2.5-VL: Stably Scaling MLLMs with Parameter-Efficient Mixture of Experts
- URL: http://arxiv.org/abs/2411.10669v1
- Date: Sat, 16 Nov 2024 02:10:14 GMT
- Title: Awaker2.5-VL: Stably Scaling MLLMs with Parameter-Efficient Mixture of Experts
- Authors: Jinqiang Long, Yanqi Dai, Guoxing Yang, Hongpeng Lin, Nanyi Fei, Yizhao Gao, Zhiwu Lu,
- Abstract summary: We propose Awaker2.5-VL, a Mixture of Experts(MoE) architecture suitable for Multimodal Large Language Models (MLLM)
To speed up the training and inference of Awaker2.5-VL, each expert in our model is devised as a low-rank adaptation (LoRA) structure.
Experiments on multiple latest benchmarks demonstrate the effectiveness of Awaker2.5-VL.
- Score: 21.066098443321966
- License:
- Abstract: As the research of Multimodal Large Language Models (MLLMs) becomes popular, an advancing MLLM model is typically required to handle various textual and visual tasks (e.g., VQA, Detection, OCR, and ChartQA) simultaneously for real-world applications. However, due to the significant differences in representation and distribution among data from various tasks, simply mixing data of all tasks together leads to the well-known``multi-task conflict" issue, resulting in performance degradation across various tasks. To address this issue, we propose Awaker2.5-VL, a Mixture of Experts~(MoE) architecture suitable for MLLM, which acquires the multi-task capabilities through multiple sparsely activated experts. To speed up the training and inference of Awaker2.5-VL, each expert in our model is devised as a low-rank adaptation (LoRA) structure. Extensive experiments on multiple latest benchmarks demonstrate the effectiveness of Awaker2.5-VL. The code and model weight are released in our Project Page: https://github.com/MetabrainAGI/Awaker.
Related papers
- MM-R$^3$: On (In-)Consistency of Multi-modal Large Language Models (MLLMs) [26.475993408532304]
We study the ability of an MLLM model to produce semantically similar or identical responses to semantically similar queries.
We propose the MM-R$3$ benchmark, which analyses the performance in terms of consistency and accuracy in SoTA MLLMs.
Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa.
arXiv Detail & Related papers (2024-10-07T06:36:55Z) - MoME: Mixture of Multimodal Experts for Generalist Multimodal Large Language Models [57.091523832149655]
We propose a mixture of multimodal experts (MoME) to mitigate task interference and obtain a generalist MLLM.
Our MoME is composed of two key components, a mixture of vision experts (MoVE) and a mixture of language experts (MoLE)
arXiv Detail & Related papers (2024-07-17T16:31:38Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2 is an end-to-end generalist multimodal large model (MLLM)
It unifies visual perception, understanding, and generation within a single framework.
arXiv Detail & Related papers (2024-06-12T16:44:50Z) - Needle In A Multimodal Haystack [79.81804334634408]
We present the first benchmark specifically designed to evaluate the capability of existing MLLMs to comprehend long multimodal documents.
Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning.
We observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation.
arXiv Detail & Related papers (2024-06-11T13:09:16Z) - Octavius: Mitigating Task Interference in MLLMs via LoRA-MoE [83.00018517368973]
Large Language Models (LLMs) can extend their zero-shot capabilities to multimodal learning through instruction tuning.
negative conflicts and interference may have a worse impact on performance.
We combine the well-known Mixture-of-Experts (MoE) and one of the representative PEFT techniques, i.e., LoRA, designing a novel LLM-based decoder, called LoRA-MoE, for multimodal learning.
arXiv Detail & Related papers (2023-11-05T15:48:29Z) - Making Small Language Models Better Multi-task Learners with
Mixture-of-Task-Adapters [13.6682552098234]
Large Language Models (LLMs) have achieved amazing zero-shot learning performance over a variety of Natural Language Processing (NLP) tasks.
We present ALTER, a system that effectively builds the multi-tAsk learners with mixTure-of-task-adaptERs upon small language models.
A two-stage training method is proposed to optimize the collaboration between adapters at a small computational cost.
arXiv Detail & Related papers (2023-09-20T03:39:56Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - FAME-ViL: Multi-Tasking Vision-Language Model for Heterogeneous Fashion
Tasks [129.49630356651454]
We propose a novel FAshion-focused Multi-task Efficient learning method for Vision-and-Language tasks (FAME-ViL)
Our FAME-ViL can save 61.5% of parameters over alternatives, while significantly outperforming the conventional independently trained single-task models.
arXiv Detail & Related papers (2023-03-04T19:07:48Z) - Multi-Task Meta Learning: learn how to adapt to unseen tasks [4.287114092271669]
This work proposes Multi-task Meta Learning (MTML), integrating two learning paradigms Multi-Task Learning (MTL) and meta learning.
The fundamental idea is to train a multi-task model, such that when an unseen task is introduced, it can learn in fewer steps whilst offering a performance at least as good as conventional single task learning.
MTML achieves state-of-the-art results for three out of four tasks for the NYU-v2 dataset and two out of four for the taskonomy dataset.
arXiv Detail & Related papers (2022-10-13T12:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.