論文の概要: Underwater Image Enhancement with Cascaded Contrastive Learning
- arxiv url: http://arxiv.org/abs/2411.10682v1
- Date: Sat, 16 Nov 2024 03:16:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:32.460253
- Title: Underwater Image Enhancement with Cascaded Contrastive Learning
- Title(参考訳): カスケード型コントラスト学習による水中画像の強調
- Authors: Yi Liu, Qiuping Jiang, Xinyi Wang, Ting Luo, Jingchun Zhou,
- Abstract要約: 水中画像強調(UIE)は、水中環境の複雑さと水中画像劣化の多様性のために非常に困難な課題である。
既存のディープラーニングベースのUIEメソッドの多くは、多様な劣化に同時に対処できないシングルステージネットワークに従っている。
本稿では,2段階の深層学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 51.897854142606725
- License:
- Abstract: Underwater image enhancement (UIE) is a highly challenging task due to the complexity of underwater environment and the diversity of underwater image degradation. Due to the application of deep learning, current UIE methods have made significant progress. Most of the existing deep learning-based UIE methods follow a single-stage network which cannot effectively address the diverse degradations simultaneously. In this paper, we propose to address this issue by designing a two-stage deep learning framework and taking advantage of cascaded contrastive learning to guide the network training of each stage. The proposed method is called CCL-Net in short. Specifically, the proposed CCL-Net involves two cascaded stages, i.e., a color correction stage tailored to the color deviation issue and a haze removal stage tailored to improve the visibility and contrast of underwater images. To guarantee the underwater image can be progressively enhanced, we also apply contrastive loss as an additional constraint to guide the training of each stage. In the first stage, the raw underwater images are used as negative samples for building the first contrastive loss, ensuring the enhanced results of the first color correction stage are better than the original inputs. While in the second stage, the enhanced results rather than the raw underwater images of the first color correction stage are used as the negative samples for building the second contrastive loss, thus ensuring the final enhanced results of the second haze removal stage are better than the intermediate color corrected results. Extensive experiments on multiple benchmark datasets demonstrate that our CCL-Net can achieve superior performance compared to many state-of-the-art methods. The source code of CCL-Net will be released at https://github.com/lewis081/CCL-Net.
- Abstract(参考訳): 水中画像強調(UIE)は、水中環境の複雑さと水中画像劣化の多様性のために非常に困難な課題である。
ディープラーニングの適用により、現在のUIEメソッドは大きな進歩を遂げている。
既存のディープラーニングベースのUIEメソッドの多くは、多様な劣化に同時に対処できないシングルステージネットワークに従っている。
本稿では,2段階の深層学習フレームワークを設計し,各段階のネットワークトレーニングの指導にカスケード型コントラスト学習を活用することで,この問題に対処することを提案する。
提案手法を略してCCL-Netと呼ぶ。
特に、提案したCCL-Netは、色ずれ問題に合わせた色補正ステージと、水中画像の可視性とコントラストを改善するために調整されたヘイズ除去ステージの2つのカスケードステージを含む。
水中画像の高度化を確実にするために,各ステージのトレーニングをガイドするための追加制約として,コントラストロスを適用した。
第1段階では、第1のコントラスト損失を発生させるための負のサンプルとして生の水中画像を用い、第1の色補正ステージの強化結果が元の入力よりも良好であることを保証する。
第2段階では、第1色の補正段階の生水中画像よりも強化結果を第2のコントラスト損失を構築するための負のサンプルとして使用することにより、第2のヘイズ除去段階の最終的な強化結果が中間色補正結果よりも良好なことを保証する。
複数のベンチマークデータセットに対する大規模な実験により、我々のCCL-Netは、多くの最先端手法と比較して優れたパフォーマンスを達成できることを示した。
CCL-Netのソースコードはhttps://github.com/lewis081/CCL-Netで公開される。
関連論文リスト
- UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement [27.535028176427623]
水中画像強調(UIE)は様々な海洋用途において重要な役割を担っている。
現在の学習に基づくアプローチは、水中画像形成に関わる物理過程に関する明確な事前知識を欠いていることが多い。
そこで本稿では,UIEのカラープリエントとステージ間特徴付与を統合した新しいディープ・アンフォールディング・ネットワーク(DUN)を提案する。
論文 参考訳(メタデータ) (2024-08-20T08:48:33Z) - Realistic Extreme Image Rescaling via Generative Latent Space Learning [51.85790402171696]
極端画像再スケーリングのためのLatent Space Based Image Rescaling (LSBIR) という新しいフレームワークを提案する。
LSBIRは、訓練済みのテキスト-画像拡散モデルによって学習された強力な自然画像の先行を効果的に活用し、リアルなHR画像を生成する。
第1段階では、擬似非可逆エンコーダデコーダは、HR画像の潜在特徴とターゲットサイズのLR画像との双方向マッピングをモデル化する。
第2段階では、第1段階からの再構成された特徴を事前訓練された拡散モデルにより洗練し、より忠実で視覚的に喜ぶ詳細を生成する。
論文 参考訳(メタデータ) (2024-08-17T09:51:42Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
オーバーウォーターシーンで画像をデフォグするための先行マップガイドサイクロン (PG-CycleGAN) を提案する。
提案手法は,最先端の教師付き,半教師付き,非教師付きデグジングアプローチより優れている。
論文 参考訳(メタデータ) (2022-12-23T03:00:28Z) - Adaptive Uncertainty Distribution in Deep Learning for Unsupervised
Underwater Image Enhancement [1.9249287163937976]
ディープラーニングベースの水中画像強化における大きな課題の1つは、高品質なトレーニングデータの可用性の制限である。
本研究では、条件付き変分オートエンコーダ(cVAE)を用いて、深層学習モデルのトレーニングを行う、新しい教師なし水中画像強調フレームワークを提案する。
提案手法は, 定量化と定性化の両面において, 他の最先端手法と比較して, 競争性能が向上することを示す。
論文 参考訳(メタデータ) (2022-12-18T01:07:20Z) - Underwater enhancement based on a self-learning strategy and attention
mechanism for high-intensity regions [0.0]
水中活動中に取得した画像は、濁度や光の減衰などの水の環境特性に悩まされる。
水中画像の強化に関する最近の研究と深層学習のアプローチに基づき、合成地下構造を生成する組合わせデータセットの欠如に対処する。
本稿では,ペアデータセットを必要としない深層学習に基づく水中画像強調のための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2022-08-04T19:55:40Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
2段階の工程で細部と色を精錬しながら、内在的な劣化と低照度画像を照らし出す。
カラー画像の定式化に触発されて,まず低照度入力からの劣化を推定し,環境照明色の歪みをシミュレーションし,そのコンテンツを精錬して拡散照明色の損失を回復した。
LOL1000データセットではPSNRで0.95dB、ExDarkデータセットでは3.18%のmAPでSOTAを上回った。
論文 参考訳(メタデータ) (2021-03-19T04:00:27Z) - Underwater image enhancement with Image Colorfulness Measure [7.292965806774365]
トレーニング可能なエンドツーエンドニューラルモデルである新しいエンハンスメントモデルを提案する。
より詳細に、コントラストとカラフルネスのために、この拡張ネットワークはピクセルレベルと特性レベルのトレーニング基準によって共同で最適化されている。
論文 参考訳(メタデータ) (2020-04-18T12:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。