Multi Scale Graph Neural Network for Alzheimer's Disease
- URL: http://arxiv.org/abs/2411.10720v1
- Date: Sat, 16 Nov 2024 06:48:14 GMT
- Title: Multi Scale Graph Neural Network for Alzheimer's Disease
- Authors: Anya Chauhan, Ayush Noori, Zhaozhi Li, Yingnan He, Michelle M Li, Marinka Zitnik, Sudeshna Das,
- Abstract summary: Alzheimer's disease (AD) is a complex, progressive neurodegenerative disorder characterized by extracellular Abeta plaques, neurofibrillary tau tangles, glial activation, and neuronal degeneration.
To address this, we developed a multiscale graph neural network (GNN) model, ALZ PINNACLE, using brain omics data from donors spanning the entire aging to AD spectrum.
ALZ PINNACLE is based on the PINNACLE GNN framework, which learns context-aware protein, cell type, and tissue representations within a unified latent space.
- Score: 9.008922244965085
- License:
- Abstract: Alzheimer's disease (AD) is a complex, progressive neurodegenerative disorder characterized by extracellular A\b{eta} plaques, neurofibrillary tau tangles, glial activation, and neuronal degeneration, involving multiple cell types and pathways. Current models often overlook the cellular context of these pathways. To address this, we developed a multiscale graph neural network (GNN) model, ALZ PINNACLE, using brain omics data from donors spanning the entire aging to AD spectrum. ALZ PINNACLE is based on the PINNACLE GNN framework, which learns context-aware protein, cell type, and tissue representations within a unified latent space. ALZ PINNACLE was trained on 14,951 proteins, 206,850 protein interactions, 7 cell types, and 48 cell subtypes or states. After pretraining, we investigated the learned embedding of APOE, the largest genetic risk factor for AD, across different cell types. Notably, APOE embeddings showed high similarity in microglial, neuronal, and CD8 cells, suggesting a similar role of APOE in these cell types. Fine tuning the model on AD risk genes revealed cell type contexts predictive of the role of APOE in AD. Our results suggest that ALZ PINNACLE may provide a valuable framework for uncovering novel insights into AD neurobiology.
Related papers
- Graph Theory and GNNs to Unravel the Topographical Organization of Brain Lesions in Variants of Alzheimer's Disease Progression [0.0]
We proposed and evaluated a graph-based framework to assess variations in Alzheimer's disease (AD) neuropathologies.
Our framework focuses on classic (cAD) and rapid (rpAD) progression forms.
Results suggest a unique neuropathological network organization for each AD variant.
arXiv Detail & Related papers (2024-03-01T16:16:51Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
Graph neural networks (GNNs) have been widely used for automatic cell type classification.
scBiGNN comprises two GNN modules to identify cell types.
scBiGNN outperforms a variety of existing methods for cell type classification from scRNA-seq data.
arXiv Detail & Related papers (2023-12-16T03:54:26Z) - Neuronal Cell Type Classification using Deep Learning [3.3517146652431378]
Recent developments in machine learning have provided advanced abilities for classifying neurons.
This paper aims to provide a robust and explainable deep-learning framework to classify neurons based on their electrophysiological activity.
arXiv Detail & Related papers (2023-06-01T10:28:49Z) - PINNet: a deep neural network with pathway prior knowledge for
Alzheimer's disease [2.726037037420483]
Identification of Alzheimer's Disease (AD)-related transcriptomic signatures from blood is important for early diagnosis of the disease.
We propose a pathway information-based neural network (PINNet) to predict AD patients and analyze blood and brain transcriptomic signatures.
arXiv Detail & Related papers (2022-11-27T05:00:26Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
We have recently studied covariance neural networks (VNNs) that operate on sample covariance matrices.
In this paper, we demonstrate the utility of VNNs in inferring brain age using cortical thickness data.
Our results show that VNNs exhibit multi-scale and multi-site transferability for inferring brain age
In the context of brain age in Alzheimer's disease (AD), our experiments show that i) VNN outputs are interpretable as brain age predicted using VNNs is significantly elevated for AD with respect to healthy subjects.
arXiv Detail & Related papers (2022-10-28T18:58:34Z) - A Neural Network Based Automated IFT-20 Sensory Neuron Classifier for
Caenorhabditis elegans [0.0]
Cross-organism comparison enables a wide variety of research including whole-brain analysis of functional networks.
Recent development of pan-neuronal imaging with single-cell resolution within Caenorhabditis elegans has brought neuron identification, tracking, and activity monitoring all within reach.
The principal barrier to high-accuracy neuron identification is that in adult C. elegans, the position of neuronal cell bodies is not stereotyped.
I propose an alternative neuronal identification technique using only single-color fluorescent images.
arXiv Detail & Related papers (2022-10-24T00:17:26Z) - Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease [7.594681424335177]
Alzheimers disease (AD) is a heterogeneous, multitemporal neurodegenerative disorder characterized by beta-amyloid, pathologic tau, and neurodegeneration.
We propose a novel pathology steered stratification network (PSSN) that incorporates established domain knowledge in AD pathology through a reaction-diffusion model.
arXiv Detail & Related papers (2022-10-12T02:52:00Z) - Towards self-organized control: Using neural cellular automata to
robustly control a cart-pole agent [62.997667081978825]
We use neural cellular automata to control a cart-pole agent.
We trained the model using deep-Q learning, where the states of the output cells were used as the Q-value estimates to be optimized.
arXiv Detail & Related papers (2021-06-29T10:49:42Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.