Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease
- URL: http://arxiv.org/abs/2210.05880v2
- Date: Fri, 25 Aug 2023 14:59:21 GMT
- Title: Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease
- Authors: Enze Xu, Jingwen Zhang, Jiadi Li, Qianqian Song, Defu Yang, Guorong
Wu, Minghan Chen
- Abstract summary: Alzheimers disease (AD) is a heterogeneous, multitemporal neurodegenerative disorder characterized by beta-amyloid, pathologic tau, and neurodegeneration.
We propose a novel pathology steered stratification network (PSSN) that incorporates established domain knowledge in AD pathology through a reaction-diffusion model.
- Score: 7.594681424335177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's disease (AD) is a heterogeneous, multifactorial neurodegenerative
disorder characterized by beta-amyloid, pathologic tau, and neurodegeneration.
There are no effective treatments for Alzheimer's disease at a late stage,
urging for early intervention. However, existing statistical inference
approaches of AD subtype identification ignore the pathological domain
knowledge, which could lead to ill-posed results that are sometimes
inconsistent with the essential neurological principles. Integrating systems
biology modeling with machine learning, we propose a novel pathology steered
stratification network (PSSN) that incorporates established domain knowledge in
AD pathology through a reaction-diffusion model, where we consider non-linear
interactions between major biomarkers and diffusion along brain structural
network. Trained on longitudinal multimodal neuroimaging data, the biological
model predicts long-term trajectories that capture individual progression
pattern, filling in the gaps between sparse imaging data available. A deep
predictive neural network is then built to exploit spatiotemporal dynamics,
link neurological examinations with clinical profiles, and generate subtype
assignment probability on an individual basis. We further identify an
evolutionary disease graph to quantify subtype transition probabilities through
extensive simulations. Our stratification achieves superior performance in both
inter-cluster heterogeneity and intra-cluster homogeneity of various clinical
scores. Applying our approach to enriched samples of aging populations, we
identify six subtypes spanning AD spectrum, where each subtype exhibits a
distinctive biomarker pattern that is consistent with its clinical outcome.
PSSN provides insights into pre-symptomatic diagnosis and practical guidance on
clinical treatments, which may be further generalized to other
neurodegenerative diseases.
Related papers
- Clustering Alzheimer's Disease Subtypes via Similarity Learning and Graph Diffusion [14.536841566365048]
Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects millions of people worldwide.
In this study, we aim to identify subtypes of AD that represent distinctive clinical features and underlying pathology.
arXiv Detail & Related papers (2024-10-04T21:38:14Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Multimodal Neurodegenerative Disease Subtyping Explained by ChatGPT [15.942849233189664]
Alzheimer's disease is the most prevalent neurodegenerative disease.
Current data driven approaches are able to classify the subtypes at later stages of AD or related disorders, but struggle when predicting at the asymptomatic or prodromal stage.
We propose a multimodal framework that uses early-stage indicators such as imaging, genetics and clinical assessments to classify AD patients into subtypes at early stages.
arXiv Detail & Related papers (2024-01-31T19:30:04Z) - Dimensional Neuroimaging Endophenotypes: Neurobiological Representations
of Disease Heterogeneity Through Machine Learning [11.653182438505558]
We first present a systematic literature overview of studies using machine learning and multimodal MRI to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders.
We then summarize relevant machine learning methodologies and discuss an emerging paradigm which we call dimensional neuroimaging endophenotype (DNE)
DNE dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into a low dimensional yet informative, quantitative brain phenotypic representation.
arXiv Detail & Related papers (2024-01-17T16:31:48Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Morphological feature visualization of Alzheimer's disease via
Multidirectional Perception GAN [40.50404819220093]
A novel Multidirectional Perception Generative Adversarial Network (MP-GAN) is proposed to visualize the morphological features indicating the severity of Alzheimer's disease (AD)
MP-GAN achieves superior performance compared with the existing methods.
arXiv Detail & Related papers (2021-11-25T03:24:52Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z) - MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain
Diseases [3.955454029331185]
We introduce a novel method, MAGIC, to uncover disease heterogeneity by leveraging multi-scale clustering.
We validate MAGIC using simulated heterogeneous neuroanatomical data and demonstrate its clinical potential by exploring the heterogeneity of Alzheimers Disease (AD)
Our results indicate two main subtypes of AD with distinct atrophy patterns that consist of both fine-scale atrophy in the hippocampus as well as large-scale atrophy in cortical regions.
arXiv Detail & Related papers (2020-07-01T23:42:37Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.