Digital-Analog Quantum Machine Learning
- URL: http://arxiv.org/abs/2411.10744v1
- Date: Sat, 16 Nov 2024 08:54:52 GMT
- Title: Digital-Analog Quantum Machine Learning
- Authors: Lucas Lamata,
- Abstract summary: Machine learning algorithms are extensively used in an increasing number of systems, applications, technologies, and products.
dealing with an increasing amount of data poses difficulties for classical devices.
Quantum systems may offer a way forward, possibly enabling to scale up machine learning calculations in certain contexts.
- Score: 0.0
- License:
- Abstract: Machine Learning algorithms are extensively used in an increasing number of systems, applications, technologies, and products, both in industry and in society as a whole. They enable computing devices to learn from previous experience and therefore improve their performance in a certain context or environment. In this way, many useful possibilities have been made accessible. However, dealing with an increasing amount of data poses difficulties for classical devices. Quantum systems may offer a way forward, possibly enabling to scale up machine learning calculations in certain contexts. On the other hand, quantum systems themselves are also hard to scale up, due to decoherence and the fragility of quantum superpositions. In the short and mid term, it has been evidenced that a quantum paradigm that combines evolution under large analog blocks with discrete quantum gates, may be fruitful to achieve new knowledge of classical and quantum systems with no need of having a fault-tolerant quantum computer. In this Perspective, we review some recent works that employ this digital-analog quantum paradigm to carry out efficient machine learning calculations with current quantum devices.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum computing with and for many-body physics [0.0]
Quantum many-body systems are used to build quantum processors.
Current and future quantum processors can be used to describe large many-body systems of fermions such as electrons and nucleons.
arXiv Detail & Related papers (2023-03-08T19:34:55Z) - Quantum Computing Toolkit From Nuts and Bolts to Sack of Tools [0.0]
Quantum computing has the potential to provide exponential performance benefits in processing over classical computing.
It utilizes quantum mechanics phenomena (such as superposition, entanglement, and interference) to solve a computational problem.
Quantum computers are in the nascent stage of development and are noisy due to decoherence, i.e., quantum bits deteriorate with environmental interactions.
arXiv Detail & Related papers (2023-02-17T14:08:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
Quantum reservoir computing is an approach to use such a complex and rich dynamics on the quantum systems as it is for temporal machine learning.
All these quantum machine learning approaches are experimentally feasible and effective on the state-of-the-art quantum devices.
arXiv Detail & Related papers (2020-11-10T04:45:52Z) - Quantum machine learning and quantum biomimetics: A perspective [0.0]
Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies.
In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community.
arXiv Detail & Related papers (2020-04-25T07:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.