Quantum computing with and for many-body physics
- URL: http://arxiv.org/abs/2303.04850v2
- Date: Wed, 27 Sep 2023 11:37:32 GMT
- Title: Quantum computing with and for many-body physics
- Authors: Thomas Ayral, Pauline Besserve, Denis Lacroix, Edgar Andres Ruiz
Guzman
- Abstract summary: Quantum many-body systems are used to build quantum processors.
Current and future quantum processors can be used to describe large many-body systems of fermions such as electrons and nucleons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing technologies are making steady progress. This has opened
new opportunities for tackling problems whose complexity prevents their
description on classical computers. A prototypical example of these complex
problems are interacting quantum many-body systems: on the one hand, these
systems are known to become rapidly prohibitive to describe using classical
computers when their size increases. On the other hand, these systems are
precisely those which are used in the laboratory to build quantum computing
platforms. This arguably makes them one of the most promising early use cases
of quantum computing. In this review, we explain how quantum many-body systems
are used to build quantum processors, and how, in turn, current and future
quantum processors can be used to describe large many-body systems of fermions
such as electrons and nucleons. The review includes an introduction to analog
and digital quantum devices, the mapping of Fermi systems and their
Hamiltonians onto qubit registers, as well as an overview of methods to access
their static and dynamical properties. We also highlight some aspects related
to entanglement, and touch on the description, influence and processing of
decoherence in quantum devices.
Related papers
- Digital-Analog Quantum Machine Learning [0.0]
Machine learning algorithms are extensively used in an increasing number of systems, applications, technologies, and products.
dealing with an increasing amount of data poses difficulties for classical devices.
Quantum systems may offer a way forward, possibly enabling to scale up machine learning calculations in certain contexts.
arXiv Detail & Related papers (2024-11-16T08:54:52Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Architectures for Quantum Information Processing [5.190207094732672]
Quantum computing is changing the way we think about computing.
Quantum phenomena like superposition, entanglement, and interference can be exploited to solve issues that are difficult for traditional computers.
IBM's first public access to true quantum computers through the cloud, as well as Google's demonstration of quantum supremacy, are among the accomplishments.
arXiv Detail & Related papers (2022-11-11T19:18:44Z) - Learning Quantum Systems [0.0]
Quantum technologies hold the promise to revolutionise our society with ground-breaking applications in secure communication, high-performance computing and ultra-precise sensing.
One of the main features in scaling up quantum technologies is that the complexity of quantum systems scales exponentially with their size.
This poses severe challenges in the efficient calibration, benchmarking and validation of quantum states and their dynamical control.
arXiv Detail & Related papers (2022-07-01T09:47:26Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
Quantum reservoir computing is an approach to use such a complex and rich dynamics on the quantum systems as it is for temporal machine learning.
All these quantum machine learning approaches are experimentally feasible and effective on the state-of-the-art quantum devices.
arXiv Detail & Related papers (2020-11-10T04:45:52Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.