Integrated Machine Learning and Survival Analysis Modeling for Enhanced Chronic Kidney Disease Risk Stratification
- URL: http://arxiv.org/abs/2411.10754v1
- Date: Sat, 16 Nov 2024 09:22:06 GMT
- Title: Integrated Machine Learning and Survival Analysis Modeling for Enhanced Chronic Kidney Disease Risk Stratification
- Authors: Zachary Dana, Ahmed Ammar Naseer, Botros Toro, Sumanth Swaminathan,
- Abstract summary: Chronic kidney disease (CKD) is a significant public health challenge, often progressing to end-stage renal disease (ESRD) if not detected and managed early.
We propose a novel approach to modeling CKD progression using a combination of machine learning techniques and classical statistical models.
- Score: 0.0
- License:
- Abstract: Chronic kidney disease (CKD) is a significant public health challenge, often progressing to end-stage renal disease (ESRD) if not detected and managed early. Early intervention, warranted by silent disease progression, can significantly reduce associated morbidity, mortality, and financial burden. In this study, we propose a novel approach to modeling CKD progression using a combination of machine learning techniques and classical statistical models. Building on the work of Liu et al. (2023), we evaluate linear models, tree-based methods, and deep learning models to extract novel predictors for CKD progression, with feature importance assessed using Shapley values. These newly identified predictors, integrated with established clinical features from the Kidney Failure Risk Equation, are then applied within the framework of Cox proportional hazards models to predict CKD progression.
Related papers
- Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
We utilized data about 10,326 CKD patients, combining their clinical and claims information from 2009 to 2018.
A 24-month observation window was identified as optimal for balancing early detection and prediction accuracy.
The 2021 eGFR equation improved prediction accuracy and reduced racial bias, notably for African American patients.
arXiv Detail & Related papers (2024-10-02T03:21:01Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - AI-Driven Predictive Analytics Approach for Early Prognosis of Chronic Kidney Disease Using Ensemble Learning and Explainable AI [0.26217304977339473]
Chronic Kidney Disease (CKD) is a heterogeneous disorder that significantly impacts kidney structure and functions, eventually leading to kidney failure.
The goal of this research is to visualize dominating features, feature scores, and values exhibited for early prognosis and detection of CKD using ensemble learning and explainable AI.
arXiv Detail & Related papers (2024-06-10T18:46:14Z) - Modeling Long Sequences in Bladder Cancer Recurrence: A Comparative Evaluation of LSTM,Transformer,and Mamba [0.0]
This study integrates the advantages of deep learning models for handling long-sequence data with the Cox proportional hazards model.
The LSTM-Cox model is a robust and efficient method for recurrent data analysis and feature extraction,surpassing newer models like Transformer and Mamba.
arXiv Detail & Related papers (2024-05-28T18:38:15Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - FastCPH: Efficient Survival Analysis for Neural Networks [57.03275837523063]
We propose FastCPH, a new method that runs in linear time and supports both the standard Breslow and Efron methods for tied events.
We also demonstrate the performance of FastCPH combined with LassoNet, a neural network that provides interpretability through feature sparsity.
arXiv Detail & Related papers (2022-08-21T03:35:29Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
arXiv Detail & Related papers (2020-12-24T05:19:03Z) - Sparse Longitudinal Representations of Electronic Health Record Data for
the Early Detection of Chronic Kidney Disease in Diabetic Patients [6.040252097102974]
Chronic kidney disease (CKD) is a gradual loss of renal function over time.
We propose a novel framework to learn sparse longitudinal representations of patients' medical records.
arXiv Detail & Related papers (2020-11-09T22:07:25Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.