State-Constrained Optimal Control for Coherence Preservation in Multi-Level Open Quantum Systems
- URL: http://arxiv.org/abs/2411.10840v1
- Date: Sat, 16 Nov 2024 16:53:56 GMT
- Title: State-Constrained Optimal Control for Coherence Preservation in Multi-Level Open Quantum Systems
- Authors: Nahid Binandeh Dehaghani, A. Pedro Aguiar, Rafal Wisniewski,
- Abstract summary: This paper addresses the optimal control of quantum coherence in multi-level systems, modeled by the Lindblad master equation.
We develop an energy minimization framework to control the evolution of a qutrit (three-level) quantum system while preserving coherence between states.
- Score: 1.4811951486536687
- License:
- Abstract: This paper addresses the optimal control of quantum coherence in multi-level systems, modeled by the Lindblad master equation, which captures both unitary evolution and environmental dissipation. We develop an energy minimization framework to control the evolution of a qutrit (three-level) quantum system while preserving coherence between states. The control problem is formulated using Pontryagin's Minimum Principle in the form of Gamkrelidze, incorporating state constraints to ensure coherence remains within desired bounds. Our approach accounts for Markovian decoherence, demonstrating that the Lindblad operator is non-unital, which reflects the irreversible decay processes inherent in the system. The results provide insights into effectively maintaining quantum coherence in the presence of dissipation.
Related papers
- Reachability, Coolability, and Stabilizability of Open Markovian Quantum
Systems with Fast Unitary Control [0.0]
Open Markovian quantum systems with fast and full Hamiltonian control can be reduced to an equivalent control system on the standard simplex.
We show that for certain tasks of interest, the control Hamiltonian can be chosen time-independent.
arXiv Detail & Related papers (2023-08-01T14:03:59Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Quantum Pontryagin Neural Networks in Gamkrelidze Form Subjected to the
Purity of Quantum Channels [1.376408511310322]
We investigate a time and energy optimal control problem for open quantum systems.
We deal with the state constraints through Gamkrelidze revisited method.
We obtain the necessary conditions of optimality through the Pontryagin Minimum Principle.
arXiv Detail & Related papers (2023-03-17T23:21:54Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - Conservation-law-based global bounds to quantum optimal control [0.0]
We show that an integral-equation-based formulation of conservation laws in quantum dynamics leads to a framework for identifying fundamental limits to any quantum control scenario.
We demonstrate the utility of our bounds in three scenarios -- three-level driving, decoherence suppression, and maximum-fidelity gate implementations.
arXiv Detail & Related papers (2021-05-13T03:10:51Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.