LLM-assisted Physical Invariant Extraction for Cyber-Physical Systems Anomaly Detection
- URL: http://arxiv.org/abs/2411.10918v1
- Date: Sun, 17 Nov 2024 00:09:04 GMT
- Title: LLM-assisted Physical Invariant Extraction for Cyber-Physical Systems Anomaly Detection
- Authors: Danial Abshari, Chenglong Fu, Meera Sridhar,
- Abstract summary: Cyber-Physical Systems (CPS) are vulnerable to cyber-attacks with potentially catastrophic effects.
CPS design documentation often contains semantically rich descriptions of physical procedures.
We propose a novel approach to extract physical invariants from CPS testbeds for anomaly detection.
- Score: 2.276945627589248
- License:
- Abstract: Modern industrial infrastructures rely heavily on Cyber-Physical Systems (CPS), but these are vulnerable to cyber-attacks with potentially catastrophic effects. To reduce these risks, anomaly detection methods based on physical invariants have been developed. However, these methods often require domain-specific expertise to manually define invariants, making them costly and difficult to scale. To address this limitation, we propose a novel approach to extract physical invariants from CPS testbeds for anomaly detection. Our insight is that CPS design documentation often contains semantically rich descriptions of physical procedures, which can profile inter-correlated dynamics among system components. Leveraging the built-in physics and engineering knowledge of recent generative AI models, we aim to automate this traditionally manual process, improving scalability and reducing costs. This work focuses on designing and optimizing a Retrieval-Augmented-Generation (RAG) workflow with a customized prompting system tailored for CPS documentation, enabling accurate extraction of semantic information and inference of physical invariants from complex, multimodal content. Then, rather than directly applying the inferred invariants for anomaly detection, we introduce an innovative statistics-based learning approach that integrates these invariants into the training dataset. This method addresses limitations such as hallucination and concept drift, enhancing the reliability of the model. We evaluate our approach on real-world public CPS security dataset which contains 86 data points and 58 attacking cases. The results show that our approach achieves a high precision of 0.923, accurately detecting anomalies while minimizing false alarms.
Related papers
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Few-shot Detection of Anomalies in Industrial Cyber-Physical System via
Prototypical Network and Contrastive Learning [5.9990208840809345]
We propose a few-shot anomaly detection model based on prototypical network and contrastive learning.
We show that the model can significantly improve F1 score and reduce false alarm rate (FAR) for identifying anomalous signals.
arXiv Detail & Related papers (2023-02-21T11:09:36Z) - Semi-supervised detection of structural damage using Variational
Autoencoder and a One-Class Support Vector Machine [0.0]
The paper proposes a semi-supervised method with a data-driven approach to detect structural anomalies.
The method is applied to a scale steel structure that was tested in nine damage's scenarios by IASC-ASCE Structural Health Monitoring Task Group.
arXiv Detail & Related papers (2022-10-11T07:39:08Z) - Design Methodology for Deep Out-of-Distribution Detectors in Real-Time
Cyber-Physical Systems [5.233831361879669]
An out-of-distribution (OOD) detector can run in parallel with an ML model and flag inputs that could lead to undesirable outcomes.
This study proposes a design methodology to tune deep OOD detectors to meet the accuracy and response time requirements of embedded applications.
arXiv Detail & Related papers (2022-07-29T14:06:27Z) - Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems:
An Evidence Theoretic and Meta-Heuristic Approach [0.0]
False alerts due to/ compromised IDS in ICS networks can lead to severe economic and operational damage.
This work presents an approach for reducing false alerts in CPS power systems by dealing with uncertainty without prior distribution of alerts.
arXiv Detail & Related papers (2021-11-20T00:05:39Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Security-sensitive applications that relay on Deep Neural Networks (DNNs) are vulnerable to small perturbations crafted to generate Adversarial Examples (AEs)
We propose a novel unsupervised detection mechanism that uses the selective prediction, processing model layers outputs, and knowledge transfer concepts in a multi-task learning setting.
Experimental results show that the proposed approach achieves comparable results to the state-of-the-art methods against tested attacks in white box scenario and better results in black and gray boxes scenarios.
arXiv Detail & Related papers (2021-03-09T11:06:15Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.