Model Hemorrhage and the Robustness Limits of Large Language Models
- URL: http://arxiv.org/abs/2503.23924v1
- Date: Mon, 31 Mar 2025 10:16:03 GMT
- Title: Model Hemorrhage and the Robustness Limits of Large Language Models
- Authors: Ziyang Ma, Zuchao Li, Lefei Zhang, Gui-Song Xia, Bo Du, Liangpei Zhang, Dacheng Tao,
- Abstract summary: Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.<n>We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
- Score: 119.46442117681147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment through quantization, pruning, or decoding strategy adjustments. We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes. Through systematic analysis of various LLM frameworks, we identify key vulnerability patterns: layer expansion frequently disrupts attention mechanisms, compression techniques induce information loss cascades, and decoding adjustments amplify prediction divergences. Our investigation reveals transformer architectures exhibit inherent robustness thresholds that determine hemorrhage severity across modification types. We propose three mitigation strategies: gradient-aware pruning preserves critical weight pathways, dynamic quantization scaling maintains activation integrity, and decoding calibration aligns generation trajectories with original model distributions. This work establishes foundational metrics for evaluating model stability during adaptation, providing practical guidelines for maintaining performance while enabling efficient LLM deployment. Our findings advance understanding of neural network resilience under architectural transformations, particularly for large-scale language models.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Contextual Compression Encoding for Large Language Models: A Novel Framework for Multi-Layered Parameter Space Pruning [0.0]
Contextual Compression.
(CCE) introduced a multi-stage encoding mechanism that dynamically restructured parameter distributions.
CCE retained linguistic expressivity and coherence, maintaining accuracy across a range of text generation and classification tasks.
arXiv Detail & Related papers (2025-02-12T11:44:19Z) - Latent Convergence Modulation in Large Language Models: A Novel Approach to Iterative Contextual Realignment [0.0]
A structured modulation mechanism was introduced to regulate hidden state transitions.<n>Lattice adjustments contributed to reductions in perplexity fluctuations, entropy variance, and lexical instability.
arXiv Detail & Related papers (2025-02-10T09:46:33Z) - QPruner: Probabilistic Decision Quantization for Structured Pruning in Large Language Models [3.093903491123962]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.<n> structured pruning is an effective approach to reducing model size, but it often results in significant accuracy degradation.<n>We introduce quantization into the structured pruning framework to reduce memory consumption during both fine-tuning and inference.<n>We propose QPruner, a novel framework that employs structured pruning to reduce model size, followed by a layer-wise mixed-precision quantization scheme.
arXiv Detail & Related papers (2024-12-16T10:14:01Z) - Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process.
Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their reason-agnostic nature.
We propose self-healing machine learning (SHML) to overcome these limitations.
arXiv Detail & Related papers (2024-10-31T20:05:51Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP) is a methodology designed to analyse how large language models process linguistic structures.<n>CAP intervenes in model activations through constituent-based pooling at various model levels.<n>Our findings highlight fundamental limitations in current transformer architectures regarding compositional semantics processing and model interpretability.
arXiv Detail & Related papers (2024-10-16T18:10:50Z) - LaCo: Large Language Model Pruning via Layer Collapse [56.92068213969036]
Large language models (LLMs) based on transformer are witnessing a notable trend of size expansion.
Existing methods such as model quantization, knowledge distillation, and model pruning are constrained by various issues.
We propose a concise layer-wise structured pruner called textitLayer Collapse (LaCo), in which rear model layers collapse into a prior layer.
arXiv Detail & Related papers (2024-02-17T04:16:30Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
We introduce a comprehensive data-driven framework aimed at enhancing the modeling of physical systems.
As a demonstrative application, we pursue the modeling of cathodic electrophoretic deposition (EPD), commonly known as e-coating.
arXiv Detail & Related papers (2024-01-16T14:58:21Z) - Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets [46.19529338280716]
Language models, characterized by their black-box nature, often hallucinate and display sensitivity to input perturbations.<n>We introduce a methodology designed to examine how input perturbations affect language models across various scales.<n>We present three distinct fine-tuning strategies to address robustness against multiple perturbations.
arXiv Detail & Related papers (2023-11-15T02:59:10Z) - CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain
Performance and Calibration [59.48235003469116]
We show that data augmentation consistently enhances OOD performance.
We also show that CF augmented models which are easier to calibrate also exhibit much lower entropy when assigning importance.
arXiv Detail & Related papers (2023-09-14T16:16:40Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.